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Abstract 

Attention-deficit hyperactivity disorder (ADHD) and Autism spectrum disorder (ASD) are two 

of the most common neurodevelopmental disorders found in children and they show significant 

symptom overlap. Because both disorders are diagnosed based on behavioral observation, 

inferring which disorder (or combination of disorders) is causing symptoms in an individual 

child can be challenging for clinicians, particularly when an individual shows behaviors 

consistent with comorbid ASD+ADHD. The current study examined resting 

electroencephalography (EEG), as well as task-related EEG and behavior during a modified 

flanker task in 50 children (aged 6-12) with either a diagnosis of ADHD (n=17), ASD (n=5), 

both (comorbid ADHD+ASD, COM; n=8), or no clinical diagnosis (typically developing 

control, TDC; n=20). EEG and behavioral analyses began by comparing a set of features that 

have previously been used to discriminate single disorders from TDC. Next, the data from TDC 

and children with a single diagnosis (ASD-only, ADHD-only) were submitted to k-means cluster 

analysis to evaluate data-driven subgroups regardless of diagnosis. After recovery of the optimal 

number of clusters (3), the data from COM participants were sorted into the cluster in which they 

best fit. While none of the regularities found in the literature properly explain the relationships 

between ADHD, ASD, and COM participants, the use of cluster analysis suggested potential 

phenotypes that differ in Stimulus Engagement and Feedback Responsivity. These dimensions 

may have bearing on the efficacy of treatments that target dopaminergic systems, such as 

methylphenidate. Methods such as these may give insight into the neurobiological underpinnings 

of an individual’s symptoms, which has the potential to guide decisions about appropriate 

pharmacological treatment and behavioral interventions. 
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Introduction 

Attention-deficit hyperactivity disorder (ADHD) and Autism spectrum disorder (ASD) 

are two of the most common neurodevelopmental disorders found in children, with prevalence 

rates of about 9% for ADHD (Danielson et al., 2018) and 2% for ASD (Blumberg et al., 2013). 

With no genetic or blood tests available to ascertain the presence of these disorders, diagnoses 

are generally made based on reports from caregivers or clinical observation. However, this 

proves challenging when attempting to dissociate between ADHD and ASD, two disorders with 

significant symptom overlap but differing treatment protocols.  

The situation is complicated further when a child presents with symptoms of both ADHD 

and ASD. Prior to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders 

(DSM-5; American Psychiatric Association, 2013), a diagnosis of ASD precluded a diagnosis of 

ADHD, with the expectation that any attentional deficits found in ASD were intrinsic to the 

disorder and not evidence of a comorbidity. With the introduction of the DSM-5, this restriction 

was removed, allowing providers to diagnose a child as comorbid ADHD+ASD. Unfortunately, 

many questions remain about the relationship between the two disorders, many of which would 

be best answered by examining the underlying neurobiology.  

Given our inability to examine human neurobiology directly, neuroimaging alternatives 

such as electroencephalography (EEG) provide a useful proxy. Dense-array EEG allows us to 

quickly apply many electrodes to the scalp that give insight into the temporal dynamics of an 

individual’s brain activity, either at rest or during the completion of a task. Using EEG, we can 

examine changes in electrical potentials with millisecond resolution. However, there are 

tradeoffs: with EEG’s impressive temporal resolution comes a lack of spatial resolution. At any 

given electrode, the recorded potential contains the activity of many different brain regions that 
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may or may not be actively contributing to task performance. EEG generally requires many trials 

to compute the average brain activity elicited by a certain stimulus or action, termed an event-

related potential (ERP). In theory, this isolates the brain activity that is reliably elicited by a 

situation because unrelated activity will average to zero and no longer impact the ERP.  

Another way to look at EEG is to consider the spectral content, or the amount of power in 

the waveform that is oscillating at a certain frequency. When used to analyze resting EEG, the 

average power in each frequency band is generally computed over an entire time period. 

Alternatively, when faced with task-related EEG, researchers often elect to use time-frequency 

analysis. This method gives the amount of power in each frequency at each time point, allowing 

the researcher to examine how much change was induced or evoked by task-related stimulation. 

Regardless of method, spectral analysis may help ameliorate concerns about data quality in a 

population that is expected to have increased sensory sensitivity and attentional abnormalities. 

ERPs contain the average of all activity at a given electrode and given timepoint, while spectral 

estimates only contain the amount of activity in a given frequency band. This means that while 

ERPs can simultaneously be biased by slow-moving artifact related to movement and fast-

moving artifact related to muscle tension, a spectral estimate will only reflect artifact occurring 

in the same frequency band. This technique is especially useful when working with children, 

especially those with sensory or attentional difficulties that may impact data quality, as found in 

our current study.    

ADHD 

 ADHD is indicated by the presence of pervasive deficits to attention, hyperactivity, and 

impulsivity in two or more settings that interfere with day-to-day functioning (American 

Psychiatric Association, 2013). Additionally, to qualify for an ADHD diagnosis, the deficits 
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must not be symptoms of another disorder and symptoms must begin before the age of 12. 

ADHD appears to be increasing in prevalence, with 2017 estimates of 9.57% compared to 2011’s 

8.47% (Zablotsky et al., 2019). The most common treatment for ADHD is medication, with more 

than 60% of those surveyed reporting pharmaceutical intervention (Danielson et al., 2018; Visser 

et al., 2014), and 46% engaged in behavioral intervention (Danielson et al., 2018).  

The exact mechanisms underlying ADHD (and their causes) are unknown. It is 

understood that ADHD is a highly heritable disorder (Larsson, Chang, D'Onofrio, & 

Lichtenstein, 2014) but the effects of environment cannot be understated given the reported 

efficacy of behavioral treatments (Pelham & Fabiano, 2008). In general, theories of ADHD 

implicate dysfunction in dopaminergic signaling between the basal ganglia and the cortex that 

results in inattention, impulsivity, hyperactivity, and altered motivation (Sagvolden, Johansen, 

Aase, & Russell, 2005). It is noteworthy that animal models and studies of children with ADHD 

have suggested both a hypo- and hyper-dopaminergic state that may differ across brain regions 

(Sagvolden et al., 2005), suggesting there may be multiple ways to result in the same behavioral 

impairment. While the precise nature of altered dopamine functioning in ADHD is unclear, one 

of the most common and effective treatments is a dopamine reuptake inhibitor, methylphenidate 

(Storebo et al., 2015). Methylphenidate exerts its effects by blocking the reuptake of dopamine 

by DAT, increasing the amount of dopamine in the synaptic cleft (Volkow et al., 1998). Use of 

methylphenidate has been associated with improvements in teacher-reported behavior and 

parent-reported quality of life (Storebo et al., 2015).  

 Though not considered part of core ADHD symptomology, research suggests that ADHD 

may also present with deficits to social cognition. These deficits are often considered the result 

of primary symptoms of ADHD such as impulsivity and inattention, which compound over time 
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and lead to social isolation (Leitner, 2014). However, a recent meta-analysis found that using 

ASD screening tools, 21% of sampled children with ADHD met criteria for a diagnosis of ASD 

(Hollingdale, Woodhouse, Young, Fridman, & Mandy, 2019). Given that these screening tools 

look beyond social cognition and include more ASD-specific symptomology such as repetitive 

and restricted behaviors, this suggests that differences to social cognition found in ADHD may 

not only be due to downstream effects of ADHD, but due to shared etiology with ASD.  

Evidence for shared social symptomology has been found in several tasks. One study found 

that children with ADHD did not differ from those with Asperger’s syndrome, a type of ASD, in 

their scores on a scale of pragmatic language use (Bishop & Baird, 2001). Children with ADHD 

were reported to use more stereotyped language and engage in fewer rapport-building 

communications (Bishop & Baird, 2001), deficits that are more commonly associated with ASD. 

Similarly, children with ADHD were not distinguishable from those with ASD in their 

performance on a theory of mind task (Buitelaar, van der Wees, Swaab-Barneveld, & van der 

Gaag, 1999). A recent meta-analysis of behavioral studies suggested there are deficits to theory 

of mind and emotion recognition in ADHD relative to TD, particularly regarding recognition of 

negative emotions (Bora & Pantelis, 2016). However, the impairment in ADHD was not as great 

as in ASD (Bora & Pantelis, 2016). Taken together, these studies provide evidence of overlap in 

social symptomology, with the potential for less impairment in ADHD, or restriction to a 

subsample of those with ADHD.   

ASD 

 ASD is characterized by impairments to social communication and interaction, as well as 

patterns of restricted and repetitive behaviors (American Psychiatric Association, 2013). These 

behaviors must present themselves during development and interfere with an individual’s day-to-
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day functioning to qualify for an ASD diagnosis. Like ADHD, ASD appears to be increasing in 

prevalence. While only 1.12% of children were reported to have ASD in 2011, 2.49% of children 

had received this diagnosis by 2017 (Zablotsky et al., 2019). However, it remains a matter of 

debate whether this increase in prevalence is due to an actual increase in the number of children 

with ASD or an improved awareness of the symptom profile that allows for greater detection 

(Zablotsky et al., 2019). 

 ASD is a highly heterogeneous disorder, with much variation in the symptoms reported 

and their severity (Masi, DeMayo, Glozier, & Guastella, 2017). Likewise, diverse sets of genes 

and environmental factors have been identified that may contribute to an ASD phenotype. The 

prevailing theory suggests that some of these varied causes result in an imbalance of excitatory 

and inhibitory neurotransmission that culminates in the overt symptomology seen in ASD 

(Rubenstein & Merzenich, 2003). The diversity of possible effects across multiple domains, 

including sensory, perceptual, and cognitive, makes this an attractive hypothesis to explain the 

range of potential symptoms. However, the cause of this disruption, as well as the directionality, 

remains debated (Dickinson, Jones, & Milne, 2016), and may also suffer from the same 

heterogeneity.   

 Treatments for ASD generally consist of behavioral interventions that show the most 

success if they begin early in life (Koegel, Koegel, Ashbaugh, & Bradshaw, 2014). Applied 

behavior analysis (ABA) is one form of behavioral intervention that is popular in ASD. ABA 

uses behaviorist principles of shaping behavior based on feedback to guide the actions of patients 

(Roane, Fisher, & Carr, 2016). There are no pharmaceutical treatments that cure ASD, but the 

FDA has approved two atypical antipsychotics, risperidone and aripiprazole, to treat symptoms 

of irritability in the disorder (Masi et al., 2017). Risperidone acts by blocking certain serotonin 
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and dopamine receptors (Masi et al., 2017), while aripiprazole modules dopaminergic activity by 

acting as a D2 receptor agonist or antagonist depending on the amount of tonic dopamine present 

(de Bartolomeis, Tomasetti, & Iasevoli, 2015). Notably, neither of these drugs target potential 

mechanisms for the excitatory/inhibitory imbalance thought to be at the core of ASD; they 

merely treat symptoms.  

In addition to the DSM-5 criteria, difficulties with attention are commonly found in ASD. 

Prior to the DSM-5’s allowance for a dual diagnosis of ADHD+ASD, researchers found that 

more than 50% of studied children with ASD met criteria for ADHD as well (D. O. Lee & 

Ousley, 2006; Salazar et al., 2015). The frontline treatment for attention difficulties in ADHD is 

the stimulant methylphenidate, a dopamine reuptake inhibitor, which has been found to be 

effective at treating attention symptoms in ASD as well (Reichow, Volkmar, & Bloch, 2013). 

However, administration of methylphenidate in ASD has a smaller effect size than seen in 

ADHD and potentially increased side effects, including irritability (Reichow et al., 2013). This 

discrepancy underscores the importance of understanding the biology that gives rise to similar 

symptoms across disorders. When faced with a child who has been given a dual diagnosis of 

ADHD+ASD, treating ADHD symptoms with typical ADHD treatments may not be as effective 

as in a child given a single diagnosis.  

Resting EEG 

To further understand these disorders, many studies have been performed using EEG, 

both at rest and during the completion of a behavioral task. One of the most robust resting EEG 

findings in ADHD research is increased activity in the theta band assessed in frontal electrodes, 

either calculated independently (Bink et al., 2015; Hermens et al., 2005) or relative to activity in 

the beta band (Snyder & Hall, 2006). Theta waves are relatively slow, oscillating at 4-7 cycles 
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per second, and they appear to serve many functions that are task-dependent. For example, 

increased spontaneous theta activity has been found during mind-wandering accompanied with 

low alertness (Braboszcz & Delorme, 2011), but induced theta activity has been found in tasks 

that require conflict resolution or rely on reinforcement learning (Cavanagh & Frank, 2014; 

Holroyd & Umemoto, 2016). Beta waves are much quicker, at 13-30 cycles per second, and 

increased power in this frequency band has been found during maintenance of the current state 

(Engel & Fries, 2010), such as is required during focused attention. A high ratio of theta relative 

to beta (theta/beta ratio, or TBR) has been found in ADHD, but it has also been found during 

mind-wandering episodes in adults without the disorder (van Son et al., 2019). This suggests 

TBR indexes an attention-related state that can occur in all people but may occur more 

commonly in ADHD.  

Increased TBR in ADHD at rest has been considered robust enough that it received FDA 

approval as a diagnostic biomarker. Studies have found specificity and sensitivity as high as 94% 

(Snyder & Hall, 2006). However, recent literature reviews suggest that TBR may have declining 

utility (Arns, Conners, & Kraemer, 2013; Jeste, Frohlich, & Loo, 2015; Saad, Kohn, Clarke, 

Lagopoulos, & Hermens, 2018). Some recent studies have failed to find differences between 

typically developing controls (TD) and ADHD, a pattern that may be driven by an increase in 

TBR in TD (Arns et al., 2013). Others suggest the recent failures may be due to oversampling of 

a specific ADHD phenotype in previous studies (Jeste et al., 2015), a hypothesis that is supported 

by a study using cluster analysis that found a distinct high-TBR phenotype (Clarke et al., 2011). 

Alternatively, it has been suggested that these null results may be due to overdiagnosis of ADHD 

when another disorder may more appropriately explain attentional symptoms, and that patients 

with lower TBR may not respond as favorably to typical ADHD treatments (Snyder, Rugino, 
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Hornig, & Stein, 2015). Taken together, this suggests that variations in TBR may reflect ADHD 

symptomology, or, alternatively, a specific phenotype within ADHD that may have relevance 

during treatment selection.  

In addition to resting differences in theta and beta activity, researchers have found 

differences in alpha asymmetry (AS) in ADHD (Baving, Laucht, & Schmidt, 1999; Hale et al., 

2010; Hale et al., 2009; Keune, Wiedemann, Schneidt, & Schonenberg, 2015; though null results 

have been reported, Gordon, Palmer, & Cooper, 2010). To calculate AS, researchers generally 

compute power at each electrode site, then subtract the natural log of the average power in a left 

hemisphere electrode (or cluster of electrodes) from the natural log of the average power in a 

corresponding right hemisphere electrode (Allen, Coan, & Nazarian, 2004). Studies of both 

children (Baving et al., 1999; Hale et al., 2010) and adults (Hale et al., 2009; Keune et al., 2015) 

have found greater right hemisphere alpha relative to left. This is generally referred to as 

“rightward AS.” Additionally, children who have a parent with an ADHD diagnosis were found 

to have significantly greater asymmetry than children of unaffected parents, leading to the 

suggestion that it may be a marker of genetic load (Hale et al., 2010).  

The mechanism underlying alpha symmetry is still debated, and potentially complicated 

by using a ratio that masks the absolute alpha content recorded from each hemisphere. Some 

researchers suggest that because alpha is generally inversely related to the underlying cortical 

activity (Allen et al., 2004), increased right hemisphere alpha in ADHD indicates a hypo-active 

right hemisphere or hyper-active left hemisphere. The most popular model of AS suggests that 

hemispheric variations relate to approach-withdrawal motivation (Allen, Keune, Schonenberg, & 

Nusslock, 2018). In this model, greater left hemisphere cortical activity (and thus lesser left 

hemisphere alpha) corresponds to a willingness to approach stimuli or situations, while greater 
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right hemisphere cortical activity (and lesser right hemisphere alpha) mediates withdrawal (Allen 

et al., 2018). It is possible that differences in motivation found in ADHD may be reflected in this 

balance.  

Further, it has been suggested that rather than simply indicating fewer withdrawal-related 

tendencies, right hemisphere alpha activity may represent the relative activation of a “behavioral 

inhibition system” intended to shape motivated behaviors (Gable, Neal, & Threadgill, 2018; 

Reznik & Allen, 2018). This additional interpretation emphasizes the importance of right 

dorsolateral prefrontal cortex and right inferior frontal gyrus in cognitive control (Gable et al., 

2018). This view suggests that increased right hemisphere alpha may reflect reduced activation 

of this system and carry with it increased impulsivity and decreased control over motivated 

behaviors (Gable et al., 2018). A hypoactive behavioral inhibition system would be consistent 

with ADHD symptomology, namely deficits to impulsivity and cognitive control.  

 In ASD, on the other hand, of the most common spectral EEG findings is increased 

power in high beta (20-30 Hz) and gamma (30-80 Hz) frequencies (Edgar et al., 2015; Orekhova 

et al., 2007; see Rojas & Wilson, 2014; Wang et al., 2013 for reviews). Gamma oscillations are 

generated through the activity of GABAergic inhibitory interneurons, either in concert with other 

inhibitory interneurons or driven by excitatory pyramidal cells (Whittington, Traub, Kopell, 

Ermentrout, & Buhl, 2000). Alterations to GABA have been found in humans with ASD as well 

as in animal models. Researchers have used MR spectroscopy to find decreased GABA in the 

cortices of children with ASD (Gaetz et al., 2014), while others have found increased plasma 

GABA (Dhossche et al., 2002). Additionally, many of the genes that increase the risk for ASD 

are involved in coding for GABA receptor subtypes (Coghlan et al., 2012). By comparison, 

children and adolescents with ADHD have displayed decreased beta activity relative to TD 
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(Giertuga et al., 2017), though mixed results have been found and some researchers suggest the 

potential for a high-beta subgroup within ADHD (Clarke et al., 2011). Additionally, children 

with ADHD have shown decreased plasma GABA relative to those with ASD (Dhossche et al., 

2002). Taken together, this suggests that increased high beta/gamma activity while at rest may 

relate specifically to an ASD phenotype or ASD symptomology.  

 Just as high beta/gamma appears specific to ASD, TBR may be specific to ADHD. 

Children with ASD do not appear to have increased TBR as found in ADHD (Chan, Sze, & 

Cheung, 2007; El-Habashy, Raafat, Afifi, Raafat, & Abdullah, 2016). However, increased 

rightward AS like that found in ADHD has been found in ASD (Sutton et al., 2005), though a 

larger study failed to replicate this finding (Burnette et al., 2011). Interestingly, both studies 

found significant relationships between AS and the expression of ASD: Sutton et al. (2005) 

found that those with the highest rightward AS scores faced lesser social impairment but greater 

social anxiety, while Burnette et al. (2011) replicated this finding only in participants with below 

average IQ. Additionally, Burnette et al. (2011) reported that parents’ age of first concern was 

later in life for children with high rightward AS, leading them to suggest that increased approach 

tendencies in these children may have masked the presence of their ASD symptoms. While the 

research that has been performed on AS in ASD has not been as fruitful as that in ADHD, the 

evidence appears to suggest the presence of functional significance.  

 Taken together, increased TBR and rightward AS relative to TD may distinguish children 

with an ADHD diagnosis from TD individuals. Excess TBR would not be expected in ASD, but 

rightward AS may be present. On the other hand, increased high beta/gamma activity may 

differentiate ASD from those without a diagnosis, but a subgroup of those with ADHD 

symptomology may also display this trait.  
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Behavioral indices and task-related EEG 

Reaction times & stimulus-related frontal midline theta 

Behavioral studies of ADHD have emphasized measures that relate to cognitive control. 

Reaction time variability (RTV) is one behavioral measure that appears to consistently 

differentiate ADHD from TD. ADHD displays greater RTV when making responses across 

multiple paradigms (Kofler et al., 2013). Potential physiological correlates of this have been 

found using neuroimaging. A functional magnetic resonance imaging (fMRI) of adolescents with 

ADHD found their increased RTV related to decreased activation in the caudate and putamen 

(Rubia, Smith, Brammer, & Taylor, 2007), two basal ganglia structures that are reliant on 

dopamine signaling, as well as the temporal lobe, thalamus, and cerebellum.  

More recently, McLoughlin, Palmer, Rijsdijk, and Makeig (2014), examined EEG using 

time-frequency analysis to explore the relationship between brain activity and RTV. By looking 

at the time-frequency contents of the response, rather than an ERP, calculations can be 

performed on not only the absolute power in a given frequency at a given time, but also intertrial 

phase coherence (ITPC). ITPC is a measure of phase relationship across trials, with larger 

numbers indicating greater phase synchrony across trials. McLoughlin et al. (2014) found that 

ITPC in stimulus-related frontal midline theta negatively correlated with RTV. The authors 

speculated that abnormalities in frontal midline theta in their study may relate to dopaminergic 

bursts in the basal ganglia intended to guide action selection that may be altered in ADHD 

(McLoughlin et al., 2014). Children with ADHD who are treated with methylphenidate show 

normalized RTV, indistinguishable from those without a diagnosis (Groen et al., 2008). Thus, 

RTV (and potentially stimulus-related frontal midline theta) may serve as potential markers of 

unmedicated ADHD that are robust to variations in paradigm.  
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 At the same time, behavioral variability has been found in ASD, with studies reporting 

increased RTV in ASD relative to TD (Christ, Holt, White, & Green, 2007; Geurts et al., 2008). 

Despite this, some studies have reported null results (Milne, 2011) or have found that increased 

RTV in ADHD discriminates participants with ADHD from those with ASD (Groen et al., 2008; 

Tye, Asherson, et al., 2014). Additionally, Adamo et al. (2014) found that RTV was increased in 

children with ADHD or ASD with attentional symptoms but not in ASD unaffected by 

attentional symptoms. These discrepancies have led to the speculation that ADHD symptoms 

lead to increased RTV in ASD (Adamo et al., 2014; Karalunas, Geurts, Konrad, Bender, & Nigg, 

2014). It is possible that examination of RTV on an individual level in children with a comorbid 

diagnosis would help elucidate the underlying biology.  

 Other studies of behavior in these disorders have considered the possibility that 

differences in reaction time (RT) between ADHD and TDC are related to speed-accuracy 

tradeoff. These hypotheses have sometimes been examined using the drift-diffusion model, 

which takes a participant’s distribution of RTs, generally for a two-alternative forced choice 

experiment, and fits parameters that explain aspects of the decision process (Ratcliff, 1978). In 

this model, the participant is assumed to accumulate noisy evidence toward possible decisions. 

This rate at which a participant accumulates information is called v, or drift rate. A response is 

made when the amount of evidence crosses a decision boundary. The separation between these 

boundaries is called a, and this contains information about the speed-accuracy tradeoff: the larger 

this parameter, the more information the participant requires to reach a decision, thus the more 

they emphasize accuracy. The smaller this parameter, the less information the participant 

requires to decide, thus the more they emphasize speed and disregard accuracy. The final 

parameter that has been extensively considered in ADHD is Ter, or non-decision time. This 
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parameter includes any time spent encoding the stimulus, extracting relevant features on which 

to base a decision, and motor execution of the response (Ratcliff, Smith, Brown, & McKoon, 

2016). 

 Results of studies that examine drift-diffusion model parameters in ADHD are mixed. 

Some studies have found that ADHD can be distinguished from TDC on the basis of v, drift rate, 

or the rate of evidence accumulation, but not a, speed-accuracy trade off (Karalunas, Huang-

Pollock, & Nigg, 2012; Metin et al., 2013). Others have found significant differences in a (Salum 

et al., 2014), or in Ter, non-decision time (Metin et al., 2013; Salum et al., 2014). Taken together, 

no clear pattern emerges, but it is possible that consideration of drift-diffusion model parameters 

may give insight into participants’ strategy selection.  

Sensory EEG  

One of the earliest observed features of ASD was altered sensory sensitivity (Masi et al., 

2017), though sensory symptoms have only been added to the most recent version of the 

diagnostic manual (DSM-5; APA, 2013).The amount of sensitivity, and its direction, are both 

highly heterogeneous: diagnostic criteria accept both hypo- and hyper-sensitivity as potential 

symptoms (APA, 2013). Studies have found that scores on surveys intended to gauge 

abnormalities in sensory experience correlate with scores of overall ASD severity (Ashburner, 

Ziviani, & Rodger, 2008; Sanz-Cervera, Pastor-Cerezuela, Fernandez-Andres, & Tarraga-

Minguez, 2015), supporting its relevance to core ASD pathology. Interestingly, these sensory 

alterations were also found to correlate with scales of inattention, leading Sanz-Cervera et al. 

(2015) to note the potential that inattention is partially the result of differences in sensory 

experience.  
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Within the visual domain, stimulation reliably elicits a series of event-related potentials 

over occipital cortex, beginning with a positive potential that peaks around 90-100 ms, P1, and 

followed by a negative deflection called N1 or N170 that peaks between 170-200 ms (Woodman, 

2010). These components have been studied in the time-frequency domain and found to reflect 

an increase in power and phase coherence between 5-15 Hz (Rousselet, Husk, Bennett, & 

Sekuler, 2007). In ASD, one study examined variability in early sensory response to Gabor 

patches by computing alpha ITPC in occipital electrodes between 100-170ms post-stimulus onset 

(Milne, 2011). Participants with ASD showed decreased alpha ITPC relative to TD, as well as 

increased variability in peak amplitude and latency of the P1. Additionally, peak P1 amplitude 

variability correlated negatively with RTV on an unrelated task, leading the author to suggest 

that cortical variability may underlie behavioral variability in ASD (Milne, 2011). It is possible 

that variability in neural response to stimuli, as assessed by 5-15 Hz ITPC during the time of 

early visual components, may distinguish participants with ASD from those without.  

 Another sensory EEG feature that has been suggested to be abnormal in ASD is the N170 

to faces. In TD individuals, exposure to faces generally leads to quicker N170 latencies and/or 

larger amplitudes than other classes of stimuli such as objects or inverted faces, while this is not 

always found in ASD (Grice et al., 2001; Tye, Battaglia, et al., 2014). The cause of this 

face/object difference in TD individuals is hotly debated, with some researchers supporting the 

idea that faces are a special class of stimuli for which human brains have an affinity and thus 

receive specialized processing in a part of the fusiform gyrus known as the fusiform face area 

(Rhodes, Byatt, Michie, & Puce, 2004). Others believe these regions merely support expertise, 

showing increased activation for any class of stimuli with which a participant has great 

familiarity (Gauthier, 2000). These two interpretations are meaningfully different in the search 
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for the etiology of ASD: in the former, alterations to the N170 could reflect early sensory 

deficiencies; in the latter, decreased social motivation could lead to downstream effects on face 

expertise.  

Regardless of the underlying cause of the discrepancy, brain activity during the period of 

the N170 could potentially be used as a neural signature of pure ASD. The N170 has previously 

been used to discriminate ADHD and ASD in the laboratory. Tye, Battaglia, et al. (2014) and 

Groom et al. (2017) found that children with ASD or comorbid ADHD+ASD displayed 

decreased N170 amplitudes to faces relative to TD or ADHD-only. Additionally, right 

hemisphere lateralization of the N170 has been found in TD individuals but not in those with 

ASD (Groom et al., 2017; McPartland et al., 2011) or ADHD+ASD (Groom et al., 2017). Larger 

N170 amplitudes to faces in TD individuals have been related to increased power and ITPC in a 

broad frequency range, from 5-25 Hz, with most of the significant differences in power found 

between 5-15 Hz (Rousselet et al., 2007). Thus, a time-frequency analysis of the difference in 

power between faces and another class of objects may prove fruitful in examining the neural 

underpinnings of ASD or ASD symptomology.  

Reward anticipation and receipt 

Another construct that has garnered much attention in ADHD is receipt of feedback, 

reward, and punishment. This is not surprising given the reliance of reward signaling on 

dopamine within the basal ganglia, during which phasic bursts signal the receipt of reward and 

pauses in tonic firing signal the omission of an expected reward (Schultz, Dayan, & Montague, 

1997). Clinical complaints about ADHD often include lack of motivation, particularly for tasks 

that are not intrinsically rewarding (Hinshaw, 2018), and laboratory studies suggest children with 

ADHD prefer immediate rewards over delayed more than their TD peers (Demurie, Roeyers, 
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Baeyens, & Sonuga-Barke, 2012; Scheres, Lee, & Sumiya, 2008; though Scheres, Milham, 

Knutson, & Castellanos, 2007 found no difference).  

One task that gives insight into relative learning from positive and negative feedback is 

the probabilistic selection task, in which participants must learn to choose “correct” symbols via 

trial and error. Frank, Santamaria, O'Reilly, and Willcutt (2007) found participants with 

unmedicated ADHD were impaired at learning from positive feedback relative to TD and ADHD 

participants taking methylphenidate, while both ADHD groups were impaired at learning from 

negative feedback. These results are consistent with a hypothesis of altered dopamine-dependent 

reinforcement learning in ADHD. In unmedicated ADHD, low tonic dopamine may lead to 

insensitivity to dips in dopaminergic tone that signal the absence of reward, while those taking 

methylphenidate may have artificially inflated tonic dopamine due to reuptake inhibition. 

In all, there is adequate evidence to support feedback-related dysfunction as a marker of 

ADHD, but neuroimaging studies that attempt to examine the physiological correlates this 

impairment have yielded mixed results. Studies that looked at brain activity in structures closely 

tied to reward signaling have found altered patterns of activation in ADHD, including decreased 

activation in the ventral striatum during the anticipation of rewards (Plichta et al., 2009; Scheres 

et al., 2007) and increased activation in the caudate nucleus and amygdala that correlated with 

self-report hyperactivity/impulsivity severity (Plichta et al., 2009). Another study of participants 

without a clinical diagnosis found that activation in the nucleus accumbens during reward 

anticipation was negatively correlated with self-report symptoms of inattention (Stark et al., 

2011). This suggests that variations in reward anticipation may reflect both inattention and 

hyperactivity/impulsivity, and that to some extent, symptoms of inattention may lead to deficient 

error-monitoring processes. 
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AS has been used as an EEG correlate of reward anticipation, and it has been suggested 

that tasks that engage relevant circuits may be better suited to discriminate clinical groups from 

TD than resting data (Stewart, Coan, Towers, & Allen, 2014). One fMRI study found that greater 

rightward AS, like that found in ADHD, correlated with increased activation in the left anterior 

cingulate cortex/medial prefrontal cortex (ACC/mPFC) as well as the left orbitofrontal cortex 

(OFC) during the anticipation of rewards (Gorka, Phan, & Shankman, 2015). This provides 

supporting evidence that decreased left hemisphere alpha/increased right hemisphere alpha 

indexes increased neuronal activity in the left hemisphere during reward anticipation.  

While studies have not been done to examine AS during reward receipt in ADHD, other 

constructs that relate to AS have been explored. The error-related negativity (ERN) is a negative-

going wave related to dopaminergic error monitoring that is found in frontal electrodes shortly 

after the commission of an error (Cavanagh & Frank, 2014; Cohen, 2011). The ERN, thought to 

be generated in the ACC in response to midbrain dopamine signaling (Holroyd & Coles, 2002), 

has been found to be both smaller in ADHD (Groen et al., 2008) as well as no different (Groom 

et al., 2010; Jonkman, van Melis, Kemner, & Markus, 2007) relative to TD peers. More 

relevantly, ERN amplitude has been found to correlate negatively with rightward AS (Nash, 

Inzlicht, & McGregor, 2012). Given this pattern of results, it would be reasonable to hypothesize 

that children with ADHD may continue to display increased rightward AS during reward 

anticipation, and that this continued rightward AS (or failure to modulate alpha activity 

according to context) may set them apart from TD or those with ASD who are unaffected by 

ADHD.  

In addition to feedback anticipation, there is evidence of altered processing in ADHD 

during feedback receipt. The feedback-related positivity, another EEG feature thought to be 
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related to the ACC, is positive-going wave that displays enhanced amplitudes for positive 

feedback (Holroyd, Baker, Kerns, & Muller, 2008). This potential has previously been 

characterized as the feedback-related negativity (FRN), a negative-going wave found 200-400 

ms after receipt of feedback over frontocentral electrodes that is generally more negative after 

negative feedback is received (Holroyd & Coles, 2002). In TD individuals who report high 

behavioral sensitivity, the FRN has been found to correlate negatively with TBR (Massar, Rossi, 

Schutter, & Kenemans, 2012), suggesting this feature may have some relevance to regularities 

found in ADHD. 

The FRN has yielded mixed results when applied to ADHD, which appear to be context-

dependent. van Meel, Heslenfeld, Oosterlaan, Luman, and Sergeant (2011) did not find evidence 

of a FRN when comparing TD and ADHD children on their receipt of feedback without an 

associated reward or punishment, nor did Groen et al. (2008) when comparing TD children to 

those with ADHD or ASD. However, when positive feedback was associated with a monetary 

gain and negative feedback signaled no gain, TD children displayed an FRN to negative 

feedback that was not found in ADHD (van Meel et al., 2011). Another study from the same 

research group found exaggerated FRN amplitudes in ADHD relative to TD (van Meel, 

Oosterlaan, Heslenfeld, & Sergeant, 2005). This suggests that although ADHD does appear to 

differ in feedback-related potentials, variations in the task used to measure them may influence 

the directionality (or presence) of group differences. ASD, by comparison, has been shown to 

have no difference in FRN relative to TD when comparing wins to losses (Larson, South, 

Krauskopf, Clawson, & Crowley, 2011) or wins to neutral outcomes (McPartland et al., 2012).  

Given that the FRN is suggested to be a task-induced theta wave (Cavanagh & Frank, 

2014), time-frequency studies of post-feedback theta may serve as an interesting comparison. 
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Stavropoulos and Carver (2018) found that adults with ASD exhibited less theta power during 

feedback receipt than TD, regardless of whether they received positive or negative feedback. In a 

re-analysis of the data used to compare FRN amplitudes in Larson et al. (2011), van Noordt et al. 

(2017) found that both ASD and TD differentiated between feedback types, with increased theta 

activity for loss trials relative to win trials during the time the FRN is usually assessed. However, 

regardless of feedback type, theta ITPC was reduced in ASD (van Noordt et al., 2017). No 

studies have been identified that examined post-feedback theta in ADHD, but given the 

abnormalities found in the FRN, it follows that ADHD may display abnormalities in this index as 

well.   

In total, behavioral indices of RTV may differentiate children with ADHD from those 

without. During a task, stimulus-related early occipital theta/alpha ITPC may differ in those with 

an ASD diagnosis, and later frontal theta ITPC may differ in those with ADHD. After responses 

are made, AS may be abnormal in ADHD during feedback anticipation. During feedback receipt, 

frontal theta ITPC may vary in ADHD, while ASD may differ in early sensory alpha/theta ITPC 

depending on whether feedback is given in the form of a face or object.  
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Summary 

Taken together, both resting and task-related EEG have been used to differentiate 

children with ADHD or ASD from those that are TD, but also, in some cases, from each other. 

The extent to which an individual who has been diagnosed with comorbid ADHD+ASD would 

fall in line with a typical phenotype was expected to differ.  

The current study aimed to (1) determine whether resting EEG and time-frequency 

indices during a modified flanker task could differentiate children with ADHD, ASD, and 

comorbid ADHD+ASD; (2a) determine the extent to which the application of k-means cluster 

analysis to behavioral, task-related EEG features, and resting EEG features could discriminate 

between TD, ADHD, and ASD; and (2b) determine at the individual level whether participants 

with a comorbid ADHD+ASD diagnosis fit into any of the clusters. 

 I hypothesized first that (1) ASD would differ from ADHD and TD in resting gamma, 

early sensory response to stimulus onset, and sensory response differentiation between faces and 

objects. ADHD would differ from ASD and TD in resting TBR and AS, stimulus-related frontal 

theta ITPC, AS during reward anticipation, and feedback-related frontal theta ITPC. Specific 

measures are presented in Table 1, with hypotheses relative to TD for each disorder. Secondly, I 

hypothesized that (2a) k-means cluster analysis would return three clusters that correspond to 

ADHD, ASD, and TD; (2b) there would be great variability in cluster assignment for those with 

a comorbid ADHD+ASD diagnosis, with some appearing “more like” one disorder than the 

other, and some not appearing to fit into a cluster at all.    
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Method 

Participants 

Fifty-seven children between the ages of 6-12 with diagnoses of ADHD (n=20), ASD 

(n=7), both ADHD+ASD (n=10), or no diagnosis (n=20) were recruited to participate in this study. 

Participants were male except in the ADHD+ASD group, which contained 4 females. Seven 

participants were omitted from analysis due to an inability to follow procedure (ADHD = 3; ASD 

= 2; COM = 2), leaving 17 ADHD, 5 ASD, 8 COM (3 female), and 20 TDC that contributed at 

least one measure for analysis. Details on the reasons for omission can be found in the consort 

diagram in Figure 1. Demographic information can be found in Table 2.  

Participants were recruited from the University of Oklahoma Health Sciences Center’s 

Child Study Center, as well as via mass mailing, local message boards, and other area pediatric 

clinics. ASD diagnoses were confirmed via score above threshold of 15 on the Social 

Communication Questionnaire (SCQ; Rutter et al., 2003), a common screening tool for ASD, 

confirmed diagnosis by a clinical psychologist or medical doctor, and document review by a 

licensed medical doctor with experience in ASD diagnosis. ADHD diagnoses were confirmed via 

review of the parent and teacher Vanderbilt Diagnostic Rating Scales (Vanderbilt; Wolraich et al., 

2003) as well as review of documentation by a licensed medical doctor with experience in ADHD 

diagnosis. Children with a comorbid diagnosis of ADHD+ASD scored in the affected range on 

both scales and have adequate documentation to support a dual diagnosis. Typically developing 

(TD) children had scores below threshold on both the SCQ and Vanderbilt, as well as no history 

of diagnosis. Prior to completing the EEG, potential participants completed the Kaufman Brief 

Intelligence Test (KBIT; Kaufman & Kaufman, 2004) and the SCQ. Participants without a 

diagnosis of ADHD additionally completed the Vanderbilt. Participants with a comorbid diagnosis 
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of ADHD+ASD additionally completed the Vineland Adaptive Behavior Scales (VABS; Sparrow, 

Cicchetti, & Balla, 2005), which assesses how well the participant completes activities of daily 

living, and Peabody Picture Vocabulary Test (PPVT; Dunn & Dunn, 2007), which tests the 

participant’s receptive use of language.  

Exclusion criteria were nonverbal IQ and verbal IQ both < 70; presence of a seizure 

disorder or known pathogenetic disorder; history of multiple concussions or traumatic brain injury; 

or current use of any psychotropic medication aside from stimulants. Participants prescribed 

stimulants were asked to refrain from use for 48 hours prior to the study session to allow for 

medication washout. Eligible participants who were TD or had a single diagnosis of ADHD or 

ASD received $40 for their participation; participants with a comorbid diagnosis received $60 for 

their participation due to an increased number of scales administered. Children were additionally 

allowed to pick a small prize from a toy box after the completion of the EEG. 

Group differences in demographic variables were examined using a 2 (presence of ADHD 

diagnosis) x 2 (presence of ASD diagnosis) ANOVA. 

Setting 

Participants were met at either the Child Study Center (Oklahoma City, OK), Early 

Foundations (Oklahoma City, OK), or the OU Brain and Biomarker Laboratory (Norman, OK) at 

their convenience. Surveys and questionnaires were completed in a well-lit office or conference 

room. Upon their completion, participants were taken back to a dimly lit room previously 

screened for electrical artifact and familiarized with the EEG equipment and experimental 

laptop. 
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EEG recording & processing  

Participants were fitted with a 128-channel saline-based HydroCel Geodesic EEG Net 

(HCGSN; Electrical Geodesic, Inc, Eugene, OR). At the beginning of the session and between 

tasks, impedance values were adjusted until < 50 kΩ. EEG was sampled at 1000 Hz, recorded 

unfiltered, and referenced to Cz during acquisition.  

Procedure 

Rest. As soon as the EEG net was adequately applied, participants engaged in a period of 

guided rest for 3 minutes. Following the experimenter’s direction, participants sat quietly with 

eyes open for 1 min, followed by 30 s of eyes closed, then another 1 min of eyes open, followed 

by another 30 s of eyes closed. Participants always completed the rest portion of the study prior 

to beginning the task.  

Flanker task. On each trial, participants viewed an array of five characters that appeared 

on the screen for 200 ms.  Stimuli were arrows placed in the center of the screen, with one target 

stimulus in the form of “<” or “>” appearing in the center and two adjacent distractors on each 

side that were either the same as the target stimulus (congruent; for example, “<<<<<”) or 

different (incongruent; for example, “<<><<”). Participants were instructed to sit quietly in front 

of the laptop screen with their left forefingers resting on the left CTRL button and right 

forefingers on the right CTRL button. Participants were instructed to use the keyboard to indicate 

the direction of the target stimulus as quickly as possible, and to ignore the distractors that would 

try to trick them. See Figure 2 for example stimulus arrays.  

After response or termination due to nonresponse, a 1500 – 2500 ms delay occurred 

before valid feedback was given for 500 ms in the form of a happy face (social, positive) or 

check mark (nonsocial, positive) in the event of a correct answer, or sad face (social, negative) or 
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X mark (nonsocial, negative) in the event of an incorrect answer. Nonsocial feedback stimuli 

were created via scrambling the faces to roughly equate the amount of visual information 

presented across trial types. If no response was received for 4000 ms, negative feedback was 

given. An intertrial interval between 1000 and 2000 ms occurred between the offset of feedback 

and the onset of the next trial. Participants completed 10 practice trials and gave affirmation that 

they understood the task. Practice was repeated until the participant was comfortable with task 

instructions. Participants completed 1-2 blocks of 100 trials dependent on willingness to 

continue.  

Stimuli were presented using Presentation (Neurobehavioral Systems, Inc.) on a 38 cm x 

21.6 cm widescreen LCD laptop screen with a display resolution of 1920 x 1080. Target arrays 

were generated using 20-point Geneva font. Feedback stimuli were sized 424 x 640, or 8° × 12° 

visual angle. Participants were seated approximately 60 cm from the laptop screen.  

EEG processing  

Raw resting data were examined in EEGLAB 13 (Delorme & Makeig, 2004) for Matlab 

(The Mathworks, Natick, MA). Data were digitally filtered from .5 Hz (12 db/octave rolloff; 

zero-phase) to 120 Hz (24 db/octave rolloff; zero-phase), and notch filtered at 60 Hz. Segments 

of excessive artifact and individual bad electrodes were removed. Blinks, saccades, heart rate, 

and muscle artifact were removed using independent component analysis. Due to the short 

duration of the resting files, principle components analysis (PCA) was used to reduce the number 

of components to 16 prior to independent components analysis. After artifact removal, removed 

sensors were added back to the data via spherical spline interpolation. No more than 5% of 

electrodes were interpolated per subject and care was taken to ensure spatially adjacent clusters 

were not interpolated. Resting data were segmented into 2 s epochs and submitted to a fast 
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Fourier transform in Matlab with 50% overlap. Abnormal linear trends were identified in the 

data by fitting a straight line to each electrode on each trial. Trials in which a line fit an electrode 

with a slope of > 50 µV and an R2 > .30 were rejected from the data, as were trials that contained 

amplitudes greater than 75 µV or less than -75 µV. Participants with 15+ clean resting epochs 

were retained for analysis. 

Because alpha activity varies with age (Aurlien et al., 2004), each participant’s alpha 

band was estimated by comparing his or her power spectral density during eyes-open segments 

with that from his or her eyes-closed segments and finding the largest peak between 8–13 Hz. 

Individual alpha bands were constructed from -2 to +2 Hz around the peak frequency and used 

for resting and pre-feedback AS. Individual theta bands were also generated using the window -6 

Hz to -3 Hz below peak alpha frequency, similar to methods previously used to characterize theta 

for TBR comparisons in ADHD (Lansbergen, Arns, van Dongen-Boomsma, Spronk, & 

Buitelaar, 2011).  

Raw task-related data were examined in BESA 6.0 (MEGIS Software, Grafelfing, 

Germany). Segments of excessive artifact were removed, and bad electrodes were interpolated 

using spherical spline interpolation. No more than 5% of electrodes were interpolated per subject 

and care was taken to ensure spatially adjacent clusters were not interpolated. Data were digitally 

filtered from .5 Hz (12 db/octave rolloff; zero-phase) to 120 Hz (24 db/octave rolloff; zero-

phase), and notch filtered at 60 Hz. Blinks, saccades, heart rate, and muscle artifact were 

removed using independent component analysis in EEGLAB 13 (Delorme & Makeig, 2004) for 

Matlab. Data were re-referenced to the average of all sensors and Cz, the reference electrode, 

was recreated. There were three participants who completed the task but did not provide usable 

resting data. To gauge these participants’ peak alpha frequencies, a fast Fourier transform was 
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calculated on his or her entire cleaned task-related dataset. The largest peak between 8-13 Hz 

was chosen as the participant’s peak alpha frequency. 

Statistical analysis 

 Prior to analysis, values that were +/- 3 SD from the sample mean were removed from the 

dataset. Follow-up tests used Tukey’s HSD where appropriate.  

Resting frontal TBR 

Resting TBR was assessed in electrode Cz by calculating the ratio of absolute theta to 

absolute beta (13-30 Hz). Theta frequencies were calculated individually for each participant by 

using the window -6 to -3 below peak alpha. The beta band did not vary by individual. Despite 

the inherent difficulties that come with using single electrodes, only Cz was utilized due to its 

prevalence in the ADHD literature (Arns et al., 2013) and the promotion of TBR in Cz as a 

single-electrode diagnostic aid (Snyder et al., 2015). See Fig. 3. for the location of this electrode, 

circled in thick black. The resultant value was submitted to a 2 (presence of ADHD diagnosis) x 

2 (presence of an ASD diagnosis) ANOVA.   

Resting frontal AS 

 Resting frontal AS was assessed by taking the natural log of absolute alpha power in a 

small cluster of three electrodes including F7 (HCGSN electrodes 33, 27, 34) and F8 (HCGSN 

electrodes 122, 123, 116). See Fig. 3, highlighted in red. Each participant’s alpha band was 

individually constructed to vary -2 to +2 Hz around his or her peak alpha frequency. Mean power 

in the left hemisphere was subtracted from power in the right, then normalized by the total alpha 

power in those electrodes. The resultant value was submitted to a 2 (presence of ADHD 

diagnosis) x 2 (presence of an ASD diagnosis) ANOVA.   
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Resting central high beta/gamma 

Resting absolute high beta/low gamma (20-50 Hz) was measured in a cluster of 5 

electrodes including Cz (HCGSN electrodes 129, 7, 106, 31, and 80). See Fig. 3 for the locations 

of these electrodes, highlighted in orange. Because increased gamma in ASD has been found to 

be topographically widespread (Orekhova et al., 2007), electrodes were used that were least 

likely to be contaminated by movement or muscle artifact. The resultant value was submitted to a 

2 (presence of ADHD diagnosis) x 2 (presence of an ASD diagnosis) ANOVA.   

Behavior 

 Behavior was examined for participants that completed at least one full block of 100 

trials. All behavioral estimates were made using only the first 100 trials due to variations in 

participant compliance and stopping point. Accuracy was assessed by considering the number of 

correct responses for each of 50 congruent and 50 incongruent trials, as were errors of omission. 

Participants with values +/- 3 SD of the mean were removed as outliers. There were no outliers 

removed from the accuracy comparison. Two participants from the ADHD group were removed 

for having excess errors of omission in the congruent condition; one participant with ADHD was 

removed for having excess errors of omission in the incongruent condition. Accuracy and errors 

of omission were separately submitted to a 2 (presence of ADHD diagnosis) x 2 (presence of 

ASD diagnosis) x 2 (congruent/incongruent) repeated measures ANOVA.   

Ex-gaussian distribution parameters  

Estimates for mu, sigma, and tau were generated using the DISTRIB toolbox (Lacouture 

& Cousineau, 2008) for Matlab, which began with reasonable estimates based on the gaussian 

parameters of the data and used a simplex method implemented by fminsearch to find optimal 
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parameters to describe the distribution. Participants were omitted from this comparison if the log 

likelihood value returned as -Inf due to extremely small values of tau and lack of ex-gaussian 

shape (n=7). Each pair of values was examined using a 2 (presence of ADHD diagnosis) x 2 

(presence of an ASD diagnosis) x 2 (congruent/incongruent) repeated measures ANOVA. 

Diffusion model 

To test predictions related to speed-accuracy tradeoff, every participant’s mean RT, 

variance, and accuracy were submitted to the EZ-Diffusion model (Wagenmakers, van der Maas, 

& Grasman, 2007) separately for congruent and incongruent trials. This model is similar to the 

complete drift-diffusion model proposed by Ratcliff (1978), but it is vastly simplified;  rather 

than allowing these parameters to vary across trials, one estimate is returned to explain the 

individual’s entire distribution. It also does not allow the participant’s starting point to vary: the 

diffusion process is constrained to begin halfway between the boundaries, which does not allow 

for estimation of bias. However, it is similar in that it returns estimates of a, v, and Ter, which 

provide the necessary information to make judgments about speed-accuracy tradeoff.  

Per the recommendations of Wagenmakers et al. (2007), participants with 100% accuracy 

were submitted with an accuracy value that included half of an error, or 99%. Per further 

recommendations of  Wagenmakers et al. (2007), distributions were checked for non-normality 

using D’Agostino’s k, and those whose RTs were not statistically non-normal were excluded 

from analysis (n=27). Additionally, participants with values of non-decision time, Ter that were 

biologically implausible (negative values; n=2) were omitted. Finally, participants with chance 

or below chance accuracy were excluded, as the model would not run with chance accuracy 

(n=2) and returned implausible values for drift rate, v, when accuracy was below chance (n=2).  
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These restrictions left a sample of 15 participants, for which each diffusion model 

parameter was examined separately using a 2 (presence of ADHD diagnosis) x 2 (presence of an 

ASD diagnosis) x 2 (congruent/incongruent) repeated measures ANOVA. 

Stimulus-related frontal theta ITPC 

Stimulus-related epochs were generated from 1000 ms prior to stimulus onset to 1000 ms 

after. Trials with amplitudes greater than 120 µV were removed. ITPC was computed using 

Morlet wavelets with 1 Hz frequency steps using a cycle length that increased linearly from 1 

cycle at the lowest frequency (2 Hz) to 10 cycles at the highest frequency (40 Hz). ITPC was 

down-sampled to 250 time-bins. ITPC values were corrected by subtracting the critical r value, 

calculated as sqrt[-1/(number of trials)∗log(0.5)],  based on each participant’s trial count to 

remove the correlation between trials expected by chance. Mean theta ITPC was calculated 

between 200 – 400ms post stimulus onset in four electrodes including and posterior to Fz 

(HCGSN 5, 6, 11, 12). See Fig. 3 for electrode locations, highlighted in gray. Participants with 

15+ trials were retained for analysis, which will consist of a 2 (presence of ADHD diagnosis) x 2 

(presence of ASD diagnosis) ANOVA. 

Stimulus-related occipitoparietal theta/alpha ITPC 

Stimulus-related epochs used for estimation of frontal theta were also used to calculate 

theta/alpha ITPC in two occipitoparietal clusters, consistent with the literature (Rousselet et al., 

2007). Left hemisphere electrodes included P7 (T5, HCGSN 58) and neighboring 59, 64, and 65; 

right hemisphere electrodes included P8 (T6, HCGSN 96) and neighboring 90, 91, and 95. See 

Fig. 3, highlighted in blue. The original intent was to examine neural activity between 5-15 Hz 

during the time period between 140-240 ms post-stimulus onset, to coincide with typical N170 
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latencies and to replicate previous work in adults (Rousselet et al., 2007). However, review of 

the group mean ITPC plot suggested that these windows would not adequately capture the visual 

response in these children/adolescents, so 3-10 Hz between 75-300 ms post-stimulus onset was 

instead examined to capture low frequency peak neural activity. This resulted in two ITPC 

estimates for each participant that differed only by hemisphere (left vs right). Participants with 

15+ trials were retained for analysis, which consisted of a 2 (presence of ADHD diagnosis) x 2 

(presence of ASD diagnosis) x 2 (hemisphere: left/right) repeated measures ANOVA.  

Pre-feedback frontal AS 

 Feedback-related epochs for correct trials were generated from 1500 ms prior to feedback 

to 500 ms after feedback onset. Trials with amplitudes greater than 120 µV were removed. 

Event-related spectral perturbation (ERSP) was computed using Morlet wavelets with 1 Hz 

frequency steps using a cycle length that increased linearly from 1 cycle at the lowest frequency 

(2 Hz) to 10 cycles at the highest frequency (40 Hz), then down-sampled to 250 time-bins. The 

natural log of each participant’s individual average alpha band power in three left hemisphere 

electrodes including F7 (HCGSN electrodes 33, 27, 34) was subtracted from the natural log of 

his or her average alpha band power in three right hemisphere electrodes including F8 (HCGSN 

electrodes 122, 123, 116), then normalized by dividing by the mean alpha power in those 

electrodes. See Fig. 3 for electrode locations highlighted in red. Participants with 15+ trials were 

retained for analysis using a 2 (presence of ADHD diagnosis) x 2 (presence of ASD diagnosis) 

ANOVA. 

Post-feedback frontal theta ITPC 
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Feedback-related epochs for each of two feedback types (social-positive; nonsocial-

positive) were generated from 1000 ms prior to feedback onset to 1000 ms after. Trials with 

amplitudes greater than 120 µV were removed. ITPC and ERSP were computed using Morlet 

wavelets with 1 Hz frequency steps using a cycle length that increased linearly from 1 cycle at 

the lowest frequency (2 Hz) to 10 cycles at the highest frequency (40 Hz). ITPC and ERSP were 

down-sampled to 250 time-bins. ITPC values were corrected by subtracting the critical r value 

based on each participant’s trial number to remove the correlation between trials expected by 

chance. Mean theta ITPC occurring 200 – 400ms post feedback onset in four electrodes 

including and posterior to Fz (HCGSN 5, 6, 11, 12) were identified for each trial type, in 

accordance with previous literature (van Noordt et al., 2017). See Fig 1. for electrode locations, 

highlighted in gray.  

Participants with 15+ trials in each category were retained for analysis, which consisted 

of a 2 (presence of ADHD diagnosis) x 2 (presence of ASD diagnosis) x 2 (sociality: 

social/nonsocial) repeated measures ANOVA.  

Post-feedback occipitoparietal theta/alpha power  

Event-related synchronization (ERS): Feedback-related epochs used for estimation of 

frontal theta were also used to calculate theta/alpha power in two occipitoparietal electrode 

clusters, consistent with the literature (Rousselet et al., 2007). Left hemisphere electrodes 

included P7 (T5, HCGSN 58) and neighboring 59, 64, and 65; right hemisphere electrodes 

included P8 (T6, HCGSN 96) and neighboring 90, 91, and 95. See Fig. 3, highlighted in blue. 

The original intent was to examine mean theta/alpha power between 5-15 Hz during the time 

period between 140-240 ms post-stimulus onset, to coincide with typical N170 latencies. 

However, like the visual response to stimulus onset, review of the data suggested that these 



   

32 
 

parameters would not capture the response in these children/adolescents. Instead, power was 

examined between 3-10 Hz from 75-300 ms and baseline corrected using the time period 

between -100 and -500 prior to feedback onset. ERSP was only used from correct feedback trials 

because of increased likelihood the participant is attending to the screen. This resulted in four 

scores that varied by hemisphere (left/right) and sociality (social-faces/nonsocial-checks). 

Participants with 15+ trials in each condition were retained for analysis. Analyses included a 2 

(presence of ADHD diagnosis) x 2 (presence of ASD diagnosis) x 2 (hemisphere: left/right) x 2 

(sociality: social/nonsocial) repeated measures ANOVA. 

ERS ratio: A change score was generated by subtracting power for checks from power 

for faces then dividing by the power for faces, which resulted in two normalized spectral power 

estimates that vary by hemisphere (left/right). ERS ratios were submitted to a 2 (presence of 

ADHD diagnosis) x 2 (presence of ASD diagnosis) x 2 (hemisphere: left/right) repeated 

measures ANOVA.  

Event-related desynchronization (ERD): In addition to the power increases seen in 

occipitoparietal electrodes post-feedback onset, there was also a clear period of 

desynchronization later and in higher frequencies. This was examined in an exploratory analysis 

between 10-15 Hz, from 300-550 ms post feedback onset, in the same electrode clusters as the 

ERS. This resulted in four scores that varied by hemisphere (left/right) and sociality (social: 

faces; nonsocial: checks). Participants with 15+ trials in each condition were retained for 

analysis. Analyses included a 2 (presence of ADHD diagnosis) x 2 (presence of ASD diagnosis) 

x 2 (hemisphere: left/right) x 2 (sociality: social/nonsocial) repeated measures ANOVA. 

ERD ratio: A change score was generated by subtracting power for checks from power 

for faces then dividing by the power for faces, which resulted in two normalized spectral power 
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estimates that vary by hemisphere (left/right). ERD ratios were submitted to a 2 (presence of 

ADHD diagnosis) x 2 (presence of ASD diagnosis) x 2 (hemisphere: left/right) repeated 

measures ANOVA.  

k-means cluster analysis 

All behavioral, event-related, and resting EEG measures for TD, ADHD, and ASD were 

converted to z scores based on the means and standard deviations of TDC and submitted to k-

means cluster analysis implemented in R, which allows for missing data. This algorithm 

partitions the data into a user-specified number of clusters by first beginning with randomly 

chosen datapoints that serve as “centroids” for each cluster. With each iteration, data points are 

assigned to a cluster and the centroid is adjusted to reflect the mean of that cluster. The algorithm 

continues with the goal of minimizing within-cluster variability until the requested number of 

iterations is complete or the centroid value no longer changes. After clusters are assigned, 

silhouette plots can be generated that show the similarity between each participant and its cluster. 

The strength of this analysis lies in its ability to encapsulate all the potential markers of each 

disorder in one analysis, letting the data speak to which markers are relevant to classification and 

which are not. 

The cluster analysis began with three groups that were expected to reflect TD, ASD, and 

ADHD, while also allowing for the possibility that only two clusters or up to ten clusters would 

result. After recovery of a stable number of clusters, data from the comorbid ADHD+ASD 

participants were submitted for classification. That is, their own z-scored variables were 

classified into the cluster they are closest to by minimizing the distance between cluster means 

and their own data. This allowed us to determine the cluster to which their brain activity is most 
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closely related. Follow-up analyses compared clusters on variables that may affect classification 

such as age, IQ, and disorder symptomology.  

Given the variability found within ADHD when using cluster analysis (Clarke et al., 

2011), and the symptom variability found in ASD, it was not unlikely that more than one cluster 

may be found for each disorder. Exploratory analyses relied on visual inspection of the resultant 

silhouette plot that displayed how similar participants were to their own clusters (individual 

difference scores from the cluster mean) relative to other clusters, as well as comparison of mean 

silhouette scores and percent variance accounted for by each cluster. Elbow plots were also 

generated which plot the sum of squared distances between cluster members and their cluster 

means for each number of clusters, with an expected “elbow” in the plot as increasing cluster 

numbers provide diminishing returns for reducing cluster distances. The value at the bend of the 

elbow is considered to be the optimum number of clusters. Together, these sources of 

information were used to identify the number of clusters that explained the most variance while 

maximizing within-cluster similarity. Again, participants with a comorbid ADHD+ASD 

diagnosis were submitted to these data-driven clusters post-hoc to determine where best they fit.  

Discriminant analysis 

After clusters were generated and comorbid participants were sorted into a cluster, linear 

discriminant analysis was used to further understand the contribution of each variable to cluster 

membership. This analysis considers the entire dataset of continuous variables, as well as the 

categorical cluster membership, and generates k-1 linear functions that best predict cluster 

membership. This technique reduces the dimensionality of the data from a scattershot list of 

variables to an interpretable set of maximal differences. Because this analysis required a 

complete dataset, missing values were replaced with their cluster’s mean for that variable. This 
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necessarily reduced within-group variability and increased discriminability between clusters. 

However, this approach was considered preferable to imputation due to the relatively small 

sample size and myriad dimensions that could be considered to generate realistic replacement 

scores. Complete details on the pattern of missing data across clusters can be found in Table 3.  

 

Results 

Demographics 

 Full ANOVA results for demographic comparisons by diagnosis are found in Table 4.  

Age: Participants ranged in age from 6-12 years old (M = 9.08, SD = 2.03). Age did not 

differ based on ADHD diagnosis or ASD diagnosis.  

IQ: K-BIT nonverbal IQ (M = 102.65, SD = 17.70) did not differ based on ADHD 

diagnosis, or ASD diagnosis.  

SCQ: As expected, there was a significant effect of ASD diagnosis on SCQ score but not 

ADHD. A post-hoc Tukey test showed that participants with an ASD, either alone or comorbid 

with ADHD, had significantly higher SCQ scores (M = 20.70, SD = 5.39) than those without (M 

= 4.03, SD = 4.26).  

Peak alpha frequency 

 Peak alpha frequency ranged from 8-12 Hz (M = 9.47). There were no effects of ADHD, 

F(1, 46) = .62, p = .43, or ASD diagnosis, F(1, 46) = 1.72, p = .20, on peak alpha frequency. 

Peak alpha frequency correlated significantly with age, r = .32, p = .03.  

Resting frontal AS  
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 There were no significant effects of ADHD or ASD on resting AS. Full ANOVA results 

for resting comparisons by diagnosis are found in Table 5.  

Resting frontal TBR  

 There were no significant effects of ADHD or ASD on resting TBR.   

Resting central high beta/gamma 

 There were no significant effects of ADHD or ASD on resting gamma.   

Behavior 

 Full ANOVA results for behavioral comparisons by diagnosis can be found in Table 6.  

 Accuracy: There was a significant effect of congruency, with more correct trials in the 

congruent condition (M = 43.13, SD = 7.89, or 86% accuracy) than the incongruent condition (M 

= 33.10, SD = 10.66, or 66% accuracy). There was a trend toward ADHD producing more errors 

overall but this comparison did not attain significance. There was no significant effect of ASD 

nor were there any interactions (all ps > .50).  

Errors of omission: There was a significant main effect of ADHD, such that participants 

with an ADHD diagnosis made more errors of omission (M = 3.11, SD = 2.52) than those 

without an ADHD diagnosis (M = 1.25, SD = 1.34) during the first block of trials. There were no 

effects of congruency or ASD, nor were there any interactions (all ps > .10).  

Ex-gaussian distribution parameters 

 Tau: Participants with a diagnosis of ADHD had significantly larger tau parameters but 

there was no effect of ASD. There was also a significant effect of congruency, such that tau 
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increased in the incongruent condition (M = 372.94) relative to the congruent condition (M = 

294.25). There were no interactions between diagnoses and congruency (ps > .2).  

 Mu: Mu did not differ according to ADHD diagnosis or ASD diagnosis. There was a 

significant effect of congruency, such that mu was larger for the incongruent condition. There 

were no interactions between diagnoses and congruency (ps > .65).  

 Sigma: Sigma did not differ according to ADHD diagnosis or ASD diagnosis. There was 

a significant effect of congruency, such that sigma was larger for the incongruent condition. 

There were no interactions between diagnoses and congruency (ps > .55).  

Diffusion parameters  

 a (boundary separation): There was a trend toward a relationship between congruency 

and a, and a trend toward an interaction between congruency and ASD. While on average the 

sample had larger values of a for the incongruent condition, the three participants with an ASD 

diagnosis considered in this comparison had similar values across conditions. There were no 

main effects of ADHD or ASD.  

 v (drift rate): There was a significant relationship between congruency and v, such that 

larger values of v were obtained for the congruent condition than the incongruent condition. 

There were no significant effects of ADHD, or ASD, nor were there any interactions between 

diagnosis and congruency (all ps > .7). 

 Ter (non-decision time): There was a significant relationship between congruency and Ter, 

and a trend toward an interaction between ASD and congruency. While most of the sample had 

larger values of Ter for the incongruent condition, the three participants with an ASD diagnosis in 
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this comparison had an attenuated difference between conditions. There were no main effects of 

ADHD or ASD, and there was no interaction between ADHD and congruency. 

Stimulus-related frontal theta ITPC  

 There was a trend toward an effect of ADHD on stimulus-related frontal theta ITPC, such 

that participants with ADHD had reduced ITPC (see Fig. 4). There were no effects of ASD. Full 

ANOVA results for task-related EEG comparisons can be found in Table 7.  

Stimulus-related occipitoparietal theta/alpha ITPC 

 There were no effects of ADHD diagnosis, ASD diagnosis, hemisphere, or interactions 

(all ps > .35) on stimulus-related occipitoparietal theta/alpha ITPC (see Fig. 5).  

Pre-feedback frontal AS 

 There were no effects of ADHD diagnosis, or ASD diagnosis on pre-feedback frontal AS.  

Post-feedback frontal theta ITPC 

 Participants with ASD had significantly greater post-feedback frontal theta ITPC across 

conditions, but there was no significant effect of ADHD diagnosis (see Fig. 6). There was also 

no effect of sociality; overall, both happy faces and checks elicited roughly the same ITPC. 

There were no interactions between sociality and diagnosis (all ps > .25).  

Post-feedback occipitoparietal theta/alpha power 

 ERS: There was a significant relationship between feedback sociality and post-feedback 

power estimates such that checks elicited more baseline-corrected power than happy faces. There 

was also a significant interaction between hemisphere and ASD diagnosis, with participants with 

an ASD diagnosis displaying greater left hemisphere power across feedback types, as well as a 
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trend toward an interaction between sociality and hemisphere. There were no main effects of 

ASD or ADHD, nor was there a main effect of hemisphere. There were no other interactions (all 

ps > .10). See Figures 7-10 for plots of each condition in each hemisphere. 

 ERS ratio: Examining ERS as a ratio of trial types (happy face - check / happy face) 

found a significant main effect of ADHD, such that ADHD had more negative ratios in both 

hemispheres. Given that the ratio is intended to identify the amount of additional activity induced 

for faces, a more negative number suggests increased brain activity in response to checks. There 

was no effect of ASD or hemisphere, nor were there any interactions (all ps > .5).  

 ERD: There was a significant main effect of hemisphere, such that greater 

desynchronization occurred in the right hemisphere. There were no effects of ADHD, ASD, or 

feedback sociality. There were no interactions (all ps > .45).  

 ERD ratio: There was a trend toward a main effect of ADHD, with ADHD having more 

negative ratios and thus displaying increased desynchronization for checks relative to faces. 

There was no main effect of ASD, or hemisphere, nor were there any interactions (all ps > .20).  

 

k-means cluster analysis 

A subset of the variables was selected for entry into cluster analysis for non-comorbid 

participants (TDC, ADHD, and ASD). Prior to cluster analysis, some variables without strong a 

priori hypotheses or significant relationships were dropped from the dataset. Feedback-related 

theta ITPC was collapsed across feedback types due to the lack of interaction between feedback 

type and diagnosis. ERD values for each hemisphere and trial type were not included, and ERD 

ratio was collapsed across hemispheres due to the lack of significant relationships. Drift-

diffusion model parameters were not included due to the small sample size. Mu and sigma were 
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removed due to the lack of a priori hypotheses. The complete list of variables can be found in 

Table 3. Because 24 out of 42 non-comorbid participants were missing data for at least one 

variable, k-means cluster analysis was performed in R using flipCluster, which allows for partial 

missing data. Rather than traditional implementations where participants are deleted listwise 

before clusters are formed, then assigned to the closest cluster, this implementation allows for the 

participants to be included during the initial cluster formation.  

To determine the optimal number of clusters, clusters were generated with k varied 

between one and ten, then mean distance to the cluster centroid was calculated at each cluster 

size to generate an elbow plot. Participants with missing data had missing distance values 

replaced with the mean of their distance values. Additionally, silhouette plots and mean 

silhouette scores were generated for each number of clusters to give insight into how well each 

participant fit into their assigned cluster.  

The elbow plot did not provide a clear answer as to the optimal number of clusters. 

Distance appeared to decrease steadily until six clusters, where it reached a plateau. The mean 

silhouette score was low (M = .06) and the silhouette plot for the six-cluster solution showed a 

large degree of misfit, including an entire cluster whose members would better fit into other 

clusters.  

Instead, evaluation of the information contained in the silhouette plots suggested a three-

cluster solution (see Fig. 11). Silhouette scores were identical for a two- or three- cluster solution 

(M = .28), but a three-cluster solution explained 10% more of the variance (29%) than a two-

cluster solution (19%). Silhouette scores dropped sharply beginning with a four-cluster solution 

(M = .18). Thus, a solution with three clusters was accepted as optimal. After the clusters were 

established using data from TDC, ADHD, and ASD, participants with a comorbid diagnosis were 
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assigned to the cluster to which they best fit by finding the cluster with the smallest difference 

between cluster centroids and the individual’s datapoints. Cluster means for each variable can be 

found in Table 8.  

General cluster characteristics 

Membership by diagnosis: These clusters did not neatly break down along disorder lines, 

with all participants clustered according to diagnosis. However, a significant association was 

found between diagnosis and cluster membership, Χ2(4)> = 10.88, p = .03, such that cluster 1 

primarily contained TDC and cluster 2 primarily contained ADHD, while cluster 3 was a mixture 

of TDC, ADHD, and ASD. Interestingly, while two participants with ASD fit best in cluster 2 

and three fit best in cluster 3, none fit best in cluster 1. Cluster membership for COM participants 

was varied, with two falling into cluster 1, four falling into cluster 2, and two falling into cluster 

3. Full details of cluster membership and diagnosis can be found in Table 9 for quick reference; 

demographic information by cluster can be found in Table 10. Figures 13-19 contain stimulus-

related frontal theta and occipitoparietal theta/alpha ITPC; feedback-related frontal theta ITPC, 

and power in the left and right hemispheres for checks and faces, broken down by cluster.  

Full ANOVA results for demographic, clinical, and behavioral comparisons by cluster 

can be found in Table 11. 

Demographics: Prior to the addition of participants with a comorbid diagnosis, clusters 

were examined for age and IQ differences. Age did not significantly differ across the clusters, 

nor did nonverbal IQ. After the addition of the COM participants, the clusters still did not differ 

significantly on age. However, they did significantly differ in terms of nonverbal IQ. Post-hoc 

tests show that cluster 1 had a significantly higher IQ than cluster 2 (Cluster 1: M = 110.94, SD = 
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14.36, range = 77 – 131; Cluster 2: M = 96.58, SD = 17.05, range = 64 – 139; Cluster 3: M = 

100.70, SD = 19.52, range = 70 – 130).  

Clinical characteristics: SCQ scores did not differ between the clusters either before 

COM participants were added or after.  

Accuracy: Accuracy differed across clusters both before and after the addition of COM 

participants. Follow-up tests indicated that Cluster 2 had significantly lower accuracy than the 

other clusters, across conditions. There was also a main effect of congruency, with higher 

accuracy in the congruent condition than the incongruent condition, both before and after the 

addition of COM participants. There were no interactions between cluster and congruency before 

or after the addition of COM participants.  

Errors of omission: Clusters differed significantly in errors of omission, both before and 

after COM participants were added/ Follow-up tests indicated that Cluster 2 had more errors than 

the other clusters. There were no main effects of congruency, either before or after COM 

participants were added. There were also no interactions between cluster and congruency before 

or after the addition of COM participants.  

Discriminant analysis  

The discriminant analysis generated two functions that were linear combinations of the 

variables used to generate clusters, resulting in two dimensions by which the groups varied. The 

first, Function 1, accounted for 73% of the ability to discriminate between clusters, while the 

second, Function 2, accounted for 27%. Variable loadings onto these functions can be found in 

Table 12 and a scatter plot displaying discriminant scores by cluster and diagnosis can be found 

in Figure 12.   
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Function 1 was the primary axis that separated the groups and may represent Stimulus 

Engagement. The constituent variables that had the strongest positive relationships with this 

function were stimulus-related frontal theta ITPC and stimulus-related occipitoparietal 

theta/alpha ITPC. That is, participants with high values of this function generally had reduced 

cortical variability in response to flanker stimulus presentation, across scalp regions. This was 

accompanied by lower values of tau, which had a strong negative relationship with this function 

in both the congruent and incongruent condition. Thus, participants with high values of Stimulus 

Engagement displayed reduced behavioral variability as indexed by tau, the exponential 

component of their RT distributions.  

Function 2 could potentially be considered as Feedback Responsivity. The variables with 

the strongest relationships to this function were tied to feedback receipt: feedback-related frontal 

theta ITPC as well as all four feedback-related occipitoparietal power variables, regardless of 

sociality or hemisphere. Additionally, this function related positively to tau, particularly in the 

congruent condition. Thus, participants with high values of Feedback Responsivity showed 

decreased frontal variability in response to the stimulus onset and increased induced power in 

occipitoparietal electrodes, accompanied by increased behavioral variability.  

 

Cluster descriptions 

Considering functions 1 and 2 together, different phenotypes emerge for each cluster.  

Cluster 1: Participants in Cluster 1, which contained 11 TD, 4 ADHD, and 2 comorbid 

participants, had moderate values for Stimulus Engagement (M = 1.5) and highly negative values 

for Feedback Responsivity (M = -2.32). During the completion of the task, Cluster 1 had about 
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average stimulus-related frontal theta ITPC and occipitoparietal theta/alpha ITPC, along with 

overall decreased frontal ITPC and occipitoparietal power to feedback stimuli.  

Cluster 2: Participants in Cluster 2, which contained 4 TDC, 10 ADHD, 2 ASD, and 4 

COM, had highly negative values for Stimulus Engagement (M = -3.51) and low values for 

Feedback Responsivity (M = .55). During the task, Cluster 2 displayed decreased stimulus-

related frontal ITPC and occipital theta/alpha ITPC, and mid-range responses to feedback 

stimuli. This was accompanied by greater behavioral variability, in both the congruent and 

incongruent conditions.  

Cluster 3: Participants in Cluster 3, which contained 5 TDC, 3 ADHD, 3 ASD, and 2 

COM, had extremely high values for Function 1 (M = 3.43) but also for Function 2 (M = 2.19). 

During the task, this cluster had increased frontal and occipitoparietal ITPC to stimulus onset, in 

addition to increased frontal ITPC and occipitoparietal power in response to feedback stimuli. 

This relative decrease in cortical variability and increase in responsivity was accompanied by 

values of tau that generally fell between those of clusters 1 and 2.  

 

Individual clustering of COM 

 Cluster 1: Two COM participants were clustered into cluster 1, which primarily 

contained TDC. The first was male, aged 11, with a nonverbal IQ of 120. This participant did not 

donate complete data; his resting data were unusable due to singing, and his task-related EEG 

data lacked an adequate number of trials for all variables except stimulus-related frontal theta 

ITPC and stimulus-related occipitoparietal theta/alpha ITPC. His values for both ITPC measures 

were moderate, in line with the rest of cluster 1. His behavioral accuracy was high, and his 

behavioral variability, as estimated by tau, was low, with the expected increase for the 
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incongruent condition relative to congruent. He made no errors of omission during the first 

block. 

 The second was also male, aged 12, with a nonverbal IQ of 124. This participant 

contributed a complete dataset. Like other members of cluster 1, he had moderate values for 

stimulus-related ITPC, both frontally and occipitally, and low values for feedback-related frontal 

theta and occipitoparietal power. His behavioral accuracy was high across conditions and he, too, 

made no errors of omission. His values of tau were low, and lower for the congruent condition 

than the incongruent condition. 

 Cluster 2: Four COM participants best fit into cluster 2, which primarily contained 

ADHD. The first was female, aged 10, with a nonverbal IQ of 87. This participant had usable 

data for all except feedback receipt. Her stimulus-related ITPC was low, both in frontal and 

occipitoparietal sensors, as was typical for cluster 2. Her accuracy was low but above chance, 

and she had seven errors of omission in each condition during the first block. Her values of tau 

were high, with only a slight increase for incongruent condition relative to the congruent 

condition.  

 The second comorbid participant that fell into cluster 2 was male, aged 8, with a 

nonverbal IQ of 100. He was able to complete the task but was not compliant with instructions 

during the rest period, preferring to keep his eyes open. Because he was preoccupied with the 

keyboard during the task and kept averting his eyes to the keys, his task EEG was unusable. 

Overall, his accuracy was low; it was above chance in the congruent condition and below chance 

in the incongruent condition. His values for tau were high across conditions, and substantially 

higher for the incongruent condition. He made substantial errors of omission (14, congruent; 12, 

incongruent) and was removed as an outlier before statistical comparisons.  
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 The third comorbid participant in cluster 2 was female, aged 11, with a nonverbal IQ of 

85. This participant contributed a complete dataset. She had low stimulus-related ITPC across 

scalp regions, as well as relatively low feedback-related ITPC and power. Her accuracy was low 

but above chance in the congruent condition and barely below chance in the incongruent 

condition. While her tau was high in the congruent condition, it was lower in the incongruent 

condition. She made 5 errors of omission in the congruent condition and 7 in the incongruent 

condition.  

 The fourth comorbid participant sorted into cluster 2 was female, aged 10, with a 

nonverbal IQ of 64. This participant contributed a complete dataset. She had greater stimulus-

related ITPC than her cluster’s average across scalp regions, as well as greater feedback-related 

frontal theta ITPC. Her feedback-related occipitoparietal power was low, however, as was her 

accuracy. Though she performed above chance in the congruent condition, she performed below 

chance in the incongruent condition. She had three errors of omission during the congruent 

condition and 5 during the incongruent.  

 Cluster 3: The final two comorbid participants fell into cluster 3. The first was male, 

aged 9, with a nonverbal IQ of 118. He contributed a complete dataset. In line with his cluster, 

this participant had relatively high frontal theta ITPC after both stimulus onset and feedback 

onset. Occipitally, he had high power in response to feedback stimuli, particularly in the right 

hemisphere relative to TDC. His accuracy was near-perfect in the congruent condition but fell to 

70% in the incongruent condition. His estimates of tau were low for the congruent condition and 

higher for the incongruent. He made no errors of omission.  

 The second comorbid participant in cluster 3 was also male and aged 9. He had a 

nonverbal IQ of 81, and he, too, contributed a complete dataset. His stimulus-related theta ITPC 
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was particularly high, though the rest of his stimulus- and feedback-related variables were 

generally high as well, in line with his cluster. He was nearly 100% accurate, missing only one 

congruent trial and making 0 errors of omission. His tau parameters were moderate, and nearly 

identical across conditions.  

 

Discussion 

 This study sought first to examine several regularities in the literature that have been 

posited as ways to discriminate between TDC and children with ASD and ADHD, both at rest 

and during the completion of a flanker task. Second, this study aimed to determine whether 

submitting these regularities to k-means cluster analysis would recover distinct disorder-related 

phenotypes, and whether insight could be gleaned about individual participants with comorbid 

ADHD+ASD based on their cluster assignment. I will begin by reviewing the individual 

regularities separately for resting EEG, task-related EEG, and behavior, then consider the cluster 

analysis.  

Resting EEG 

 Hypotheses for the resting data included increased frontal TBR and rightward AS in 

ADHD, as well as increased central high beta/low gamma in ASD. Contrary to expectations, 

significant group differences were not found for any of the resting variables. It is possible that 

our short resting segment (3 m, 2 m of which were eyes-open) was not long enough to capture a 

stable measure of brain activity at rest, though group differences have been found with short 

segments (DiStefano, Dickinson, Baker, & Jeste, 2019).  

Regarding TBR, the lack of significant results was not entirely unexpected. Previous 

research has found null results when utilizing a theta band that was based on the individual 
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participant’s peak alpha frequency, even when significant results were found using a standard 

theta band (Lansbergen et al., 2011). It is possible that participants with ADHD have a lower 

alpha band than TDC, though there were no significant differences found between peak alpha 

frequency in our sample. Similar mechanisms may be at play regarding AS, where we also used 

individualized alpha bands and failed to find significant effects, though ours would not be the 

first null result found in the literature (Alperin, Smith, Gustafsson, Figuracion, & Karalunas, 

2019; Gordon et al., 2010). Recent research suggests that rightward AS, which is considered a 

measure of approach motivation, may only differ from TDC in children with low negative affect 

(Alperin et al., 2019), which may have contributed to our lack of significant results.  

 In terms of resting central high beta/low gamma in ASD, hypotheses did not bear out: 

there were no significant differences between groups. This may be driven in part due to our small 

sample of ASD participants; though we aimed to recruit 20, we were unable to fill this group due 

to a high incidence of medication use, such as anti-depressants or anti-psychotics, that would be 

unethical or unsafe to request temporary stoppage and extended washout for the purposes of 

research, in contrast to stimulants commonly used to treat ADHD, which have a short washout 

period and few risks associated with temporary stoppage. Thus, more than half of the ASD 

participants in this statistical comparison had comorbid ADHD+ASD, and their phenotypes may 

differ at the level of the individual.  

At the same time, it is possible that the age range used in this study was not ideal to 

detect changes in gamma power, which is expected to undergo maturational changes as 

participants approach adolescence. For example, previous studies have found significantly less 

beta and gamma power in infants with ASD than TDC but no difference in toddlers  (Tierney, 

Gabard-Durnam, Vogel-Farley, Tager-Flusberg, & Nelson, 2012). In our own lab, we have found 
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no difference in high beta/low gamma power in pre-adolescent children, but significantly more in 

adolescents with ASD than TDC (De Stefano et al., 2019). The age range used in the present 

study may reflect a transitional period, complicated further by individual differences in disorder 

severity and thus differing rates of maturation.  

Task-related EEG  

 During the task, it was hypothesized that ADHD would have decreased frontal theta 

ITPC in response to both the flanker stimulus and the feedback stimuli, as well as increased pre-

feedback frontal AS. It was expected that participants with ASD would have decreased early 

sensory phase-locking to the flanker stimulus, as measured by stimulus-related theta/alpha 

occipitoparietal ITPC. It was also expected that ASD would display decreased frontal theta ITPC 

in response to the feedback stimuli, and decreased ratio of power for faces relative to checks, as 

measured by ERS ratio.  

 Overall, these predictions did not bear out. Participants with ADHD had marginally less 

frontal theta ITPC to the flanker stimulus, which fit the direction of our hypothesis but did not 

attain statistical significance. They also did not display decreased theta ITPC to the feedback 

stimuli, nor did they have increased rightward AS during feedback anticipation, despite the 

expectation that feedback anticipation may elicit group differences in motivational style and thus 

have effects on AS. Feedback-related theta waves have been characterized as signaling the need 

for cognitive control, particularly in response to negative feedback (Cavanagh & Frank, 2014). 

Because we were only able to analyze positive feedback due to low trial counts for negative 

feedback, it is possible that we were unable to characterize differences in frontal theta ITPC that 

would have emerged in the negative feedback condition. Alternatively, it is possible that due to 

the deterministic nature of our feedback, proper attention and error monitoring during the 
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response stage reduced the value of feedback to TDC and eliminated group differences. Similar 

mechanisms may be at play with rightward AS. It is also possible that the pictures used to 

provide feedback were not inherently rewarding enough to elicit motivational differences. This is 

consistent with the literature, which found significant differences between ADHD and TDC 

when a monetary reward was associated with positive feedback (van Meel et al., 2011) but not 

when participants were given feedback without an associated reward or punishment (Groen et 

al., 2008; van Meel et al., 2011). 

  Considering constructs related to ASD during the task, there were no differences between 

groups for occipitoparietal theta/alpha ITPC to the flanker stimulus; participants with ASD 

displayed the same phase-locking to the flanker stimulus as those without a diagnosis. Given our 

small sample size and the expected heterogeneity of participants (both ASD-only and comorbid 

ADHD+ASD), it is possible that we were simply underpowered to detect group differences.  

Contrary to predictions, participants with ASD displayed increased frontal theta ITPC in 

response to feedback. This result is inconsistent with the literature, which has previously found 

decreased ITPC (thus increased neural variability) in ASD (van Noordt et al., 2017). It is 

possible that because we required our participants to be free of psychotropic medications and 

have at least a verbal or nonverbal IQ of 70, our sample may not reflect the entire range of 

differences found in ASD.  

At the same time, participants with ASD had no significant difference in occipitoparietal 

theta/alpha power in response to feedback, either examined alone or in a ratio of power for 

faces/checks. We did, however, find significantly increased left hemisphere power in ASD 

relative to other groups. While the four participants in this comparison with an ASD-only 

diagnosis had on average greater ERS in the left hemisphere than the right, on average, the COM 
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participants included appeared to have greater power in the right hemisphere. Overall, this 

appears as an ASD effect of reduced differentiation between the hemispheres. This, at least, is 

consistent with the literature, which suggests that reduced hemispheric lateralization to visual 

stimuli as an early marker of ASD (Keehn, Vogel-Farley, Tager-Flusberg, & Nelson, 2015).  

Across diagnostic groups and hemispheres, our sample displayed increased ERS to 

nonsocial relative to social stimuli. That is, they had more induced power in response to checks 

than they did to faces, counter to the typical expectation of increased power for faces relative to 

objects (Rousselet et al., 2007). Though care was taken to equate the visual input by scrambling 

the face stimulus to generate the check, it is hard to equate the feedback content between a face 

and a check mark. It is possible that evaluation of the time course of the waveform might help 

understand whether stimulus properties caused this discrepancy.   

In terms of ratios of faces to checks, ADHD displayed significantly reduced bilateral ERS 

ratios and marginally reduced ERD ratios. That is, they had greater early occipitoparietal 

theta/alpha power increases to checks relative to faces, and marginally greater later 

occipitoparietal theta/alpha power decreases to checks relative to faces. While social deficits 

have been found in ADHD, they are generally explained as a consequence of typical ADHD 

symptoms such as inattention that have a negative impact on social development (Leitner, 2014). 

The current result suggests that these deficits may be evident in early sensory components 

captured over sensory cortex.  

Behavior 

Overall, there were no group differences in accuracy, but participants with ADHD were 

more likely to make errors of omission. Additionally, when decomposing reaction time 

distributions into mu, sigma, and tau, ADHD displayed significantly increased tau parameters 
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but not mu or sigma. While mu and sigma describe the normally distributed RTs, tau describes 

the longer RTs contained in the right tail of the distribution and acts as an estimate of RTV. Our 

results are consistent with reports of RTV in ADHD that only find significant differences in tau, 

but not mu or sigma (Kofler et al., 2013). Taken together, these results support a characterization 

of ADHD as displaying lapses in attention that either lead to errors of omission or longer than 

typical RTs.  

Comparison of drift-diffusion model parameters found generally null results. Drift rate, 

or v, was significantly larger for the congruent condition than incongruent, while Ter, non-

decision time, was significantly larger for the incongruent condition. The speed-accuracy 

tradeoff parameter, a, did not differ. These findings are consistent with task difficulty effects. In 

the congruent condition, less conflicting information should lead to less noise in the decision 

process and faster overall drift rates. In the incongruent condition, the need to encode and extract 

relevant information should increase, thus increasing non-decision time. There were no effects of 

diagnosis for any of the parameters, which may be due to our limited sample that contributed 

data usable by this model. Future studies may emphasize attaining more trials and potentially 

utilizing the full drift-diffusion model. Because this model allows across-trial variability, it may 

be more suited to recover group differences such as those found in the literature (Karalunas et al., 

2012; Metin et al., 2013; Salum et al., 2014)  

  

Cluster analysis 

 Though many of our comparisons failed to attain significance when examined across 

diagnostic lines, submission to k-means cluster analysis brought interesting patterns to light. 

Cluster analysis returned three clusters, as hypothesized, that contained primarily participants 
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from each diagnostic group. Cluster 1 contained primarily TDC, while Cluster 2 contained 

primarily ADHD. Cluster 3 had the largest subset of ASD-only participants, with three, while the 

other two ASD-only participants fell into Cluster 2. Cluster 3 also contained a mixture of TDC 

and ADHD.  

 The first cluster had high accuracy and few errors of omission. Their medium-range ITPC 

in response to the flanker stimulus, both frontally and occipitally, was accompanied by low 

neural consistency and responsivity to feedback stimuli, as measured by feedback-related frontal 

theta and occipitoparietal power. Given that this cluster is made up mostly of participants 

without a clinical diagnosis, this suggests that “typical” performance may be reflected in 

moderate consideration of the stimulus during onset. Because feedback was deterministic, 

appropriate processing during stimulus onset and response may have negated the need for 

extended processing of the feedback stimulus. Participants in this cluster also evidenced 

decreased behavioral variability, particularly in the congruent condition, as compared to the other 

clusters. The two COM participants sorted into this cluster both had high nonverbal IQs and 

committed few errors of omission. Taken together, this suggests a balanced phenotype that 

performed the task adequately and efficiently. 

 Cluster 2, on the other hand, had decreased frontal and occipitoparietal ITPC in response 

to the flanker stimulus, accompanied by moderate responses to the feedback stimuli. Unlike the 

other clusters, behavioral performance was poor, with decreased accuracy, increased errors of 

omission, and the highest behavioral variability. Of the four COM participants sorted into this 

cluster, only two were able to yield complete datasets, and all four exhibited errors of omission. 

Participants in this cluster were primarily diagnosed with ADHD, which suggests that 

these measures may reflect an inability to sustain attention to what was intended to be a boring 
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task. All three of the female COM participants in the study fit best into this cluster, which may 

not be surprising. Research suggests that girls must display more severe symptoms than boys 

before parents consider their behaviors worrisome (Mowlem, Agnew-Blais, Taylor, & Asherson, 

2019). Because this cluster was the only one that was impaired in completing the task, it follows 

that participants with the greatest impairment would fall here. Notably, four TDC also fit best 

into this cluster. While ADHD is diagnosed based on behavioral observation, there is no discrete 

cutoff that separates children with the disorder from those without. Rather, diagnosis requires a 

judgment that symptoms of inattentiveness and/or hyperactivity interfere significantly with day-

to-day life. TDC who were unable or unwilling to adequately perform the task may only show 

impairment in the context of our research study, which would support their lack of clinical 

diagnosis. 

One commonly suggested mechanism for ADHD (Sagvolden et al., 2005; Sonuga-Barke, 

2005) that may underlie these results is hypodopaminergic neurotransmission. As previously 

mentioned, one of the most common treatments for ADHD is methylphenidate, which blocks the 

reuptake of dopamine by DAT1 at the synaptic cleft. This increases the availability of dopamine 

in the ventral striatum, as well as in prefrontal and temporal regions, with the amount of change 

related to the amount of change in inattentive symptoms (Volkow et al., 2012). There is evidence 

to suggest that children diagnosed with ADHD who have 10/10 homozygous DAT1 alleles, 

which code for increased DAT1 expression, have impaired performance tests of sustained 

attention and increased RTV relative to diagnosed children with one or none of these alleles 

(Bellgrove, Hawi, Kirley, Gill, & Robertson, 2005; Loo et al., 2003). Additionally, the 

administration of methylphenidate was shown to modulate EEG activity in opposite directions 

based on whether a participant had homozygous 10/10 alleles (Loo et al., 2003), suggesting that 
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children with high RTV and poor sustained attention may be impacted differently by the use of 

stimulants. 

Frontal theta ITPC, which was decreased in this cluster in response to stimulus onset, 

may reflect coordination between dopaminergic regions within the basal ganglia and the medial 

prefrontal cortex (Cavanagh & Frank, 2014). Variability in frontal theta phase during stimulus 

presentation has been found to correlate with RTV not only in participants with ADHD 

(McLoughlin et al., 2014) but also in TDC throughout the lifespan (Papenberg, Hammerer, 

Muller, Lindenberger, & Li, 2013). Aberrant RTV found in ADHD has been shown to be 

improved by treatment with methylphenidate (Groom et al., 2010; Kofler et al., 2013), but not by 

nonstimulant treatments (Kofler et al., 2013). Taken together, this suggests that participants in 

Cluster 2 may benefit the most from the use of traditional ADHD treatments such as 

methylphenidate, which augment dopamine activity.  

Our third cluster contained participants from all diagnostic groups. While clusters 1 and 2 

displayed about average neural activity in response to either the flanker (cluster 1) or the 

feedback stimuli (cluster 2), this cluster displayed above-average activity to both, across all 

measures. This was accompanied by low behavioral variability. This cluster may represent a 

phenotype with increased sensory responsivity and/or increased task engagement relative to the 

other clusters. However, it does not appear that this potential increased task engagement was 

necessary to complete the task: compared directly to cluster 1, this cluster displays more ITPC to 

the flanker, and ITPC and power to the feedback stimuli, but no increase in behavioral 

performance.   

Cluster 3 does not represent a single diagnosis, complicating its interpretation. However, 

it contained 4 participants with pure ADHD diagnosis. While ADHD is typically considered in 
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terms of inattentiveness, researchers have emphasized the importance of attentional control in 

general (Hinshaw, 2018). This view suggests that ADHD symptoms may result from inability to 

regulate attentional demands by either increasing or decreasing attention as the task requires. 

Other researchers have suggested a specifically “overfocused” subtype within ADHD, with a 

hypothesized etiology of increased norepinephrinergic and dopaminergic neurotransmission that 

leads to perseveration and selective attention (Kinsbourne, 1991).  

Though limited in number, Cluster 3 also contained the largest subset of ASD-only 

participants. Previous studies of children with ASD have suggested there is considerable 

variability in their sensory experience, with some appearing to show sensory hyposensitivity and 

others displaying hypersensitivity (DeBoth & Reynolds, 2017; Schauder & Bennetto, 2016). One 

study investigating sensory responses in children with ASD using fMRI found that the 

magnitude of response to visual stimuli in many brain regions, including primary sensory 

cortices, correlated significantly with parent reports of sensory sensitivity, suggesting that 

exaggerated early sensory responses may underlie complaints of hypersensitivity (Green et al., 

2013). Another study used EEG to examine visual processing in ASD, which allows for a greater 

understanding of the time course of group differences. Baruth, Casanova, Sears, and Sokhadze 

(2010) found that participants with ASD had larger and earlier P1 amplitudes to non-target 

stimuli on a go/no-go task than typically developing participants, as well as increased P2 

amplitudes to target stimuli. Together, this suggests that increased reactivity in these participants 

may begin relatively early in primary visual cortex.   

The concept of overfocus has also been applied to ASD. Another study used cluster 

analysis to understand symptom reports from children with ASD, including parent responses to a 

survey intended to gauge overfocus (Liss et al., 2006). They found that nearly a third of their 
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sample fell into clusters that were either very or mildly over-focused, and that symptom reports 

of improper allocation of attention correlated with those of sensory over-reactivity. This provides 

evidence that, at least in the context of ASD, increased sensory responsivity may relate to 

attentional difficulties. Unfortunately, the clinical scales used to characterize our study 

participants did not include a measure specifically designed to capture attentional overfocus, so 

clinical/behavioral sequelae of the over-focused neural phenotype cannot be confirmed in the 

current sample. 

The biological underpinning of this cluster’s pattern of results is hard to characterize, but 

altogether, it is possible that Cluster 3 represents a cohort of children with increased early 

sensory sensitivity. Increased early sensitivity has been found in ASD, and is usually considered 

an effect of a dysregulation of cortical excitation and inhibition (Rubenstein & Merzenich, 

2003). Like much of the cortex, primary visual areas are comprised of mini-columns of 

GABAergic interneurons and glutamatergic pyramidal cells(Rockland & Ichinohe, 2004). 

Stimulation of GABAergic neurons in visual cortex has been shown to decrease firing rates of 

glutamatergic neurons, sharpening visual representations in rats (S. H. Lee et al., 2012). Greater 

GABA content has also been related to decreased BOLD response in humans (Donahue, Near, 

Blicher, & Jezzard, 2010), suggesting that larger visual responses to feedback stimuli in this 

cluster could potentially represent reduced inhibition in visual cortex. 

It is noteworthy that alterations of the ratio of excitation/inhibition in ASD are generally 

related to increased neural variability and thus lower ITPC (Edgar et al., 2016), which is not the 

pattern seen here. It is possible that other mechanisms may also lead to this pattern of results. 

Pharmacological augmentation of dopamine has been related to increased occipital blood flow 

and increased signal-to-noise ratio in response to visual stimulation in rhesus monkeys (Zaldivar, 
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Rauch, Whittingstall, Logothetis, & Goense, 2014). Application of dopamine directly to visual 

cortex did not produce the same effects (Zaldivar et al., 2014), suggesting that the changes seen 

in visual cortex result from top-down mechanisms generated elsewhere. Increased dopamine 

activity could also have effects on frontal theta, where power in response to errors has been 

found to depend on the integrity of white matter tracts between the medial frontal cortex and the 

ventral striatum (Cohen, 2011). These theta oscillations have been suggested as one possible way 

by which attention could modulate sensory signals (Cavanagh & Frank, 2014). Together, a 

phenotype with increased dopaminergic neurotransmission may present as having highly 

consistent frontal theta activity that contributes to the decreased signal-to-noise ratio and 

increased power found over occipital electrodes. Behaviorally, this may present as overly 

focused on the task at hand and only to be negative when task disengagement must occur.  

In addition to these participants with ADHD and ASD, two COM participants were 

sorted into Cluster 3. Both contributed complete datasets with high accuracy and few errors of 

omission. True to their cluster, these participants displayed robust responses to both the flanker 

and feedback stimuli. Given the disparities in both brain activity and behavior, it is questionable 

whether treatments that would help participants in Cluster 2 would also apply to Cluster 3. While 

symptoms of inattention may be expected to be decreased by stimulants such as 

methylphenidate, there is less evidence that symptoms of increased focus can be altered this way. 

Few studies have been completed with this end point, but one examination of symptom profiles 

compared typically developing adults to those with ADHD who were or were not taking 

methylphenidate. The researchers found that both ADHD groups had significantly more 

symptoms of increased focus than participants without an ADHD diagnosis (Ozel-Kizil et al., 
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2016). Perhaps more importantly, they found that the groups did not differ from each other, 

suggesting that methylphenidate may not effectively control these symptoms.  

It is also important to note that Cluster 3 contained five participants who do not have a 

clinical diagnosis. While overfocus or “hyperfocus” is typically considered in terms of clinical 

populations, the general psychology literature describes a state termed “flow” that is described 

similarly (Ashinoff & Abu-Akel, 2019). It is possible that the distinction between a clinical 

diagnosis and a TDC displaying the behavior may lie in attentional control: a TDC may have the 

ability to engage and disengage from this state at will, while a clinical diagnosis may be given to 

children who display difficulty controlling this behavior. Future work should consider utilizing 

an approach that can disentangle voluntary, tactical engagement in this state from involuntary, 

deleterious engagement that may be driven by a clinical disorder.  

Limitations 

 This study was not without its limitations. We were unable to recruit enough participants 

to fill the entire ASD and COM groups, likely due to our medication exclusion criteria. This left 

us unable to make firm conclusions about the measures that were expected to relate primarily to 

ASD. Regarding task performance, many participants had extremely high accuracy. This 

complicated any analysis of positive vs. negative feedback and made it hard to determine 

whether the increased ITPC and power utilized by Cluster 3 would confer an advantage or 

disadvantage if appropriately taxed. Future studies may examine this by increasing task 

difficulty, potentially by reducing the stimulus duration.  

Finally, our pattern of missing data was such that participants in Cluster 2 tended to be 

missing feedback-related variables. Given the lower accuracy found in this cluster, it follows that 

there would be fewer positive feedback trials available for analysis. Despite this, behavioral and 
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stimulus-related EEG measures were able to separate this cluster from the others. Future studies 

may emphasize an increase in trial numbers to ensure that even poor performers are able to 

donate complete data.   

 

Conclusion 

 ADHD and ASD are both highly heterogeneous disorders, with symptom overlap and 

differing developmental trajectories that provide a challenge for the clinician to diagnose and for 

the researcher to study. Few regularities in the ADHD/ASD literature replicated in our study. 

However, application of cluster analysis led to three clusters with differing phenotypes. One 

cluster, containing primarily ADHD, was marked by behavioral and neural variability. This 

cluster may represent the typical hypodopaminergic portrayal of ADHD, and participants in this 

cluster may thus respond favorably to use of stimulants. Another, containing representatives 

from all diagnostic groups, including most participants with ASD, was marked by robust 

occipitoparietal responses to feedback and neural invariability. This cluster may represent a 

differing failure of cognitive control caused by hyperdomanergic circuits, thus may respond less 

favorably to the use of stimulants that increase dopamine activity. As expected, children with a 

comorbid ADHD+ASD diagnosis differed individually in the cluster to which they best fit. 

Similarly, they likely differ in the most effective treatment, underscoring the importance of a 

holistic view of their behavior but also their brain activity.  
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Figure 1. Consort diagram including reasons for exclusion during collection and number 
excluded for each variable or set of variables thereafter.   
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Figure 2. A) Example stimulus arrays, congruent (left) and incongruent (right). B) Possible 
feedback stimuli: social-positive, happy face; nonsocial-positive, check; social-negative, sad 
face; nonsocial-negative, check.   
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Figure 3. EGI HCGSN electrode map with electrodes for each comparison highlighted. Red, 
lateral frontal electrodes used for resting and feedback anticipation-related alpha asymmetry. 
Gray, frontal electrodes used for stimulus-related and feedback-related theta ITPC. Orange, 
central electrodes used for resting gamma. Circled in black, Cz, used for estimation of resting 
TBR. Blue, occipitoparietal electrodes used for stimulus-related and feedback-related theta/alpha 
ITPC. 
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Figures 

 

Figure 4. Stimulus-related frontal theta ITPC in A) TDC, B) ADHD, C) ASD, and D) COM 
participants.  
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Figure 5. Stimulus-related occipitoparietal theta/alpha ITPC in A) TDC, B) ADHD, C) ASD, and 
D) COM participants. 
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Figure 6. Feedback-related frontal theta ITPC in A) TDC, B) ADHD, C) ASD, and D) COM 
participants. 
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Figure 7. Feedback-related occipitoparietal theta/alpha power in response to faces in the left 
hemisphere in A) TDC, B) ADHD, C) ASD, and D) COM participants. 
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Figure 8. Feedback-related occipitoparietal theta/alpha power in response to faces in the right 
hemisphere in A) TDC, B) ADHD, C) ASD, and D) COM participants. 

 



   

70 
 

 

Figure 9. Feedback-related occipitoparietal theta/alpha power in response to checks in the left 
hemisphere in A) TDC, B) ADHD, C) ASD, and D) COM participants. 
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Figure 10. Feedback-related occipitoparietal theta/alpha power in response to checks in the right 
hemisphere in A) TDC, B) ADHD, C) ASD, and D) COM participants. 
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Figure 11. Silhouette plot for 3-cluster solution, color coded by diagnostic group. TDC = 

white; ADHD = blue; ASD = red.  
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Figure 12. Scatter plot displaying scores on discriminant functions by cluster membership 
(shape) and diagnosis (color). Cluster 1 = diamonds; Cluster 2 = squares; Cluster 3 = circles. 
TDC = white; ADHD = blue; ASD = red; COM = yellow.  
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Figure 13. Stimulus-related frontal theta ITPC in participants that best fit into A) Cluster 1, B) 
Cluster 2, C) Cluster 3.  
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Figure 14. Stimulus-related occipitoparietal theta/alpha ITPC in participants that best fit into A) 
Cluster 1, B) Cluster 2, C) Cluster 3.  
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Figure 15. Feedback-related frontal theta/alpha ITPC in participants that best fit into A) Cluster 
1, B) Cluster 2, C) Cluster 3.  
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Figure 16. Feedback-related occipitoparietal theta/alpha power in response to faces in the left 
hemisphere in participants who best fit into A) Cluster 1, B) Cluster 2, and C) Cluster 3. 
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Figure 17. Feedback-related occipitoparietal theta/alpha power in response to faces in the right 
hemisphere in participants who best fit into A) Cluster 1, B) Cluster 2, and C) Cluster 3. 
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Figure 18. Feedback-related occipitoparietal theta/alpha power in response to checks in the left 
hemisphere in participants who best fit into A) Cluster 1, B) Cluster 2, and C) Cluster 3. 



   

80 
 

 

Figure 19. Feedback-related occipitoparietal theta/alpha power in response to checks in the right 
hemisphere in participants who best fit into A) Cluster 1, B) Cluster 2, and C) Cluster 3. 
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Tables 

 Disorder 
Variables of Interest ADHD ASD 

Resting frontal TBR Increased - 
Resting frontal AS* Increased - 

Resting central high beta/low gamma - Increased 
RTV Increased - 

Stimulus-related frontal theta ITPC (200 - 400 ms) Decreased - 
Stimulus-related occipitoparietal theta/alpha ITPC (0 - 

200 ms) 
- Decreased 

Pre-feedback frontal AS* (-1000 – 0) Increased - 
Post-feedback frontal theta ITPC (200 – 400 ms) Decreased Decreased 

Post-feedback occipitoparietal theta/alpha power 
difference for faces vs. objects 

- Decreased 

 

Table 1. Variables of interest and hypotheses for each group, relative to TD.  

*AS hypotheses suggest increased “rightward” AS, that is, increased alpha power in the right 
hemisphere.  

 

 

 

 

 

 

 

 



 
 

 

 Diagnostic Group 

 
TDC  

(n=20) 
ADHD  
(n=17) 

ASD  
(n=5) 

COM  
ADHD+ASD  

(n=8) 
Analysis 

Variable M SD M SD M SD M SD  

Age 9.75 2.22 9.12 2.12 8.80 1.92 10.00 1.31 n.s. 

K-BIT 
Nonverbal 

IQ 
106.50 16.94 103.25 17.55 93.80 13.55 97.38 21.70 n.s. 

SCQ 2.35 3.31 6.13 4.47 23.60 3.65 18.88 5.69 
ASD > 

ADHD/TDC 

PPVT        91.63 9.12  

VABS       75.38 7.23  

 

Table 2. Demographic information by diagnosis. One participant with ADHD was missing K-
BIT Nonverbal IQ and another was missing SCQ score, leaving 16 participants with ADHD for 
those comparisons. PPVT and VABS were only collected for comorbid participants.  

  



   

83 
 

Variable 
Cluster 1 
(n = 17) 

Cluster 2 
(n = 20) 

Cluster 3 
(n=13) 

Resting frontal AS 2 2 1 

Resting frontal TBR 1 2 1 

Resting central gamma 1 2 1 

Stimulus-related frontal theta ITPC 0 2 1 

Stimulus-related occipitoparietal theta/alpha ITPC, 
both hemispheres 0 2 1 

Pre-feedback AS 1 4 1 

Feedback-related frontal theta ITPC 3 6 1 

Feedback-related ERS to faces, left hemisphere 3 6 1 

Feedback-related ERS to checks, left hemisphere 3 6 1 

Feedback-related ERS to faces, right hemisphere 3 6 1 

Feedback-related ERS to checks, right hemisphere 3 6 1 

Feedback-related ERS ratio of faces/checks, left hemisphere 5 7 1 

Feedback-related ERS ratio of faces/checks, right hemisphere 4 7 2 

Feedback-related ERD ratio of faces/checks, both hemispheres 3 7 1 

Tau for congruent trials 1 2 2 

Tau for incongruent trials 1 3 2 

 

Table 3. Number of missing datapoints for each variable, by cluster.   
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Demographics Variable 

   Effect DF F p 

Age    

   ADHD 1, 47 .99 .33 

   ASD 1, 47 .64 .43 

K-Bit Nonverbal IQ    

   ADHD 1, 46 .09 .77 

   ASD 1, 46 2.34 .13 

SCQ    

   ADHD 1, 46 1.46 .23 

   ASD 1. 46 121.00 <.0001 

 

Table 4. ANOVA results for demographic comparisons by diagnosis, with p ≤ .05 in bold and p 
p ≤ .10 in italics. 
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Resting Variable 

   Effect DF F p 

Alpha Asymmetry    

   ADHD 1, 42 .51 .48 

   ASD 1, 42 .46 .50 

Theta/Beta Ratio    

   ADHD 1, 43 .10 .75 

   ASD 1, 43 .03 .85 

High Beta/Low Gamma Power    

   ADHD 1, 43 .04 .85 

   ASD 1, 43 .01 .90 

 

Table 5. ANOVA results for resting comparisons by diagnosis, with p ≤ .05 in bold and p p ≤ .10 
in italics. 
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Variable Behavior 

   Effect DF F p 

Accuracy    

   ADHD 1,45 2.65 .11 

   ASD 1, 45 .11 .74 

   Congruency 1, 45 43.16 <.0001 

   Congruency x ADHD 1, 45 .04 .84 

   Congruency x ASD 1, 45 .33 .57 

Errors of Omission    

   ADHD 1, 43 11.10 .002 

   ASD 1, 43 1.24 .27 

   Congruency 1, 43 2.63 .11 

   Congruency x ADHD 1, 43 2.52 .12 

   Congruency x ASD 1, 43 1.02 .32 

Mu    

   ADHD 1, 38 .04 .84 

   ASD 1, 38 .16 .69 

   Congruency 1, 38 20.80 <.0001 

   Congruency x ADHD 1, 38 .18 .68 

   Congruency x ASD 1, 38 .19 .67 

Sigma    

   ADHD 1, 38 .07 .79 

   ASD 1, 38 .52 .48 

   Congruency 1, 38 7.31 .01 

   Congruency x ADHD 1, 38 .00 .97 

   Congruency x ASD 1. 38 .36 .55 

Tau    

   ADHD 1, 38 9.15 .004 

   ASD 1, 38 .23 .64 
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   Congruency 1, 38 10.46 .003 

   Congruency x ADHD 1, 38 .01 .94 

   Congruency x ASD 1, 38 1.71 .20 

EZ-Diffusion Model: a    

   ADHD 1, 12 .12 .73 

   ASD 1, 12 .20 .66 

   Congruency 1, 12 3.70 .08 

   Congruency x ADHD 1, 12 1.30 .28 

   Congruency x ASD 1, 12 4.02 .07 

EZ-Diffusion Model: v    

   ADHD 1, 12 .72 .41 

   ASD 1, 12 .33 .58 

   Congruency 1, 12 13.76 .003 

   Congruency x ADHD 1, 12 .00 .95 

   Congruency x ASD 1, 12 .13 .72 

EZ-Diffusion Model: Ter    

   ADHD 1, 12 .20 .66 

   ASD 1, 12 .32 .58 

   Congruency 1, 12 20.47 .0007 

   Congruency x ADHD 1, 12 .13 .72 

   Congruency x ASD 1, 12 2.99 .11 

 

Table 6. ANOVA results for behavioral comparisons by diagnosis, with p ≤ .05 in bold and p p ≤ 
.10 in italics. 
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Task-Related EEG Variables Variable 

   Effect DF F p 

Stimulus-Related Frontal Theta ITPC    

   ADHD 1, 44 3.11 .08 

   ASD 1, 44 .74 .40 

Stimulus-Related Occipitoparietal Theta/Alpha ITPC    

   ADHD 1, 44 1.07 .31 

   ASD 1, 44 .23 .63 

   Hemisphere 1, 44 .03 .87 

   Hemisphere x ADHD 1, 44 .86 .36 

   Hemisphere x ASD 1, 44 .58 .45 

Pre-Feedback Frontal Alpha Asymmetry    

   ADHD 1, 41 .30 .58 

   ASD 1, 41 2.12 .15 

Feedback-Related Frontal Theta ITPC    

   ADHD 1, 37 .03 .87 

   ASD 1, 37 5.04 .03 

   Sociality 1, 37 1.03 .32 

   Sociality x ADHD 1, 37 1.15 .29 

   Sociality x ASD 1, 37 .15 .70 

Feedback-Related Occipitoparietal ERS    

   ADHD 1, 37 .69 .41 

   ASD 1, 37 .74 .40 

   Sociality 1, 37 19.35 <.0001 

   Hemisphere 1, 37 .23 .64 

   Sociality x ADHD 1, 37 .00 .99 

   Sociality x ASD 1, 37 .66 .42 

   Hemisphere x ADHD 1, 37 .98 .33 

   Hemisphere x ASD 1, 37 4.25 .046 
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   Hemisphere x Sociality 1, 37 3.53 .07 

   Hemisphere x Sociality x ADHD 1, 37 2.25 .14 

   Hemisphere x Sociality x ASD 1, 37 .03 .87 

Feedback-Related Occipitoparietal ERS Ratio    

   ADHD 1, 31 5.41 .03 

   ASD 1, 31 1.17 .29 

   Hemisphere 1, 31 .14 .71 

   Hemisphere x ADHD 1, 31 .26 .62 

   Hemisphere x ASD 1, 31 .44 .51 

Feedback-Related Occipitoparietal ERD    

   ADHD 1, 37 1.11 .30 

   ASD 1, 37 .82 .37 

   Sociality 1, 37 .57 .46 

   Hemisphere 1, 37 8.08 .007 

   Sociality x ADHD 1, 37 .09 .76 

   Sociality x ASD 1, 37 1.05 .31 

   Hemisphere x ADHD 1, 37 .37 .55 

   Hemisphere x ASD 1, 37 .48 .49 

   Hemisphere x Sociality 1, 37 1.84 .18 

   Hemisphere x Sociality x ADHD 1, 37 .09 .76 

   Hemisphere x Sociality x ASD 1, 37 .41 .53 

Feedback-Related Occipitoparietal ERD Ratio    

   ADHD 1, 33 3.61 .07 

   ASD 1, 33 .14 .71 

   Hemisphere 1, 33 1.20 .28 

   Hemisphere x ADHD 1, 33 1.71 .20 

   Hemisphere x ASD 1, 33 .74 .40 

 

Table 7. ANOVA results for task-related EEG comparisons by diagnosis, with p ≤ .05 in bold 
and p ≤ .10 in italics. 
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Variable Cluster 1 Cluster 2 Cluster 3 

Resting frontal AS -.43 .87 .63 

Resting frontal TBR -.02 -.35 .69 

Resting central gamma .12 .29 -.73 

Stimulus-related frontal theta ITPC -.08 -1.03 .84 

Stimulus-related occipitoparietal theta/alpha ITPC, both 
hemispheres 

.10 -.74 1.02 

Pre-feedback AS -.21 .40 .19 

Feedback-related frontal theta ITPC -.67 -.08 .93 

Feedback-related ERS to faces, left hemisphere -.34 .16 1.09 

Feedback-related ERS to checks, left hemisphere -.38 -.11 1.05 

Feedback-related ERS to faces, right hemisphere -.34 -.29 .74 

Feedback-related ERS to checks, right hemisphere -.30 -.07 .97 

Feedback-related ERS ratio of faces/checks, left hemisphere -.15 -.05 -.24 

Feedback-related ERS ratio of faces/checks, right hemisphere .05 -.20 -.09 

Feedback-related ERD ratio of faces/checks, both hemispheres -.16 -.72 .65 

Tau for congruent trials -.53 1.49 0.16 

Tau for incongruent trials -.25 1.80 -.29 

 

Table 8. Cluster means for each variable submitted to cluster analysis.  
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Diagnosis Cluster 1 Cluster 2 Cluster 3  Total  
TDC  11 4 5  20 

ADHD 4 10 3  17 
ASD 0 2 3  5 

COM 2 4 2  8 
      

Total 17 20 13  50 
 

Table 9. Cluster membership by diagnosis.  
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 Cluster 

 Cluster 1 (n=17) 
Cluster 2 
(n=20) 

Cluster 3 
(n=13) 

Analysis 

Variable M SD M SD M SD  

Age 9.94 1.92 8.60 2.09 8.69 1.84 n.s. 

K-BIT Nonverbal IQ 110.94 14.36 96.58 17.05 100.69 19.52 
Cluster 1 > 
Cluster 2 

SCQ 6.12 6.98 9.21 8.62 10.38 10.67 n.s. 

PPVT  92.50 4.95 85.25 2.99 103.50 9.19  

VABS 72.00 12.73 75.25 4.35 79.00 9.90  

 

Table 10. Demographic information by cluster. One participant in Cluster 2 is missing K-BIT 
Nonverbal IQ and another is missing SCQ score, leaving 19 participants for those comparisons. 
PPVT and VABS were only collected for comorbid participants (n=8) so no statistical 
comparisons were performed.  
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Before Addition of COM  
(n = 42) 

 
After Addition of COM 

(n = 50) Variable 
 

   Effect DF F p  DF F p 

Age        

   Cluster 2, 39 1.97 .15  2, 47 2.47 .10 

K-Bit Nonverbal IQ        

   Cluster 2, 38 1.42 .25  2, 46 3.37 .04 

SCQ        

   Cluster 2, 38 1.02 .37  2, 46 1.00 .37 

Accuracy        

   Cluster 2, 37 5.95 .006  2, 45 10.99 .0001 

   Congruency 1, 37 47.75 <.0001  1, 45 61.69 <.0001 

   Cluster x Congruency 2, 37 1.16 .33  2, 45 1.32 .28 

Errors of Omission        

   Cluster 2, 36 5.27 .01  2, 43 10.14 .0002 

   Congruency 1, 36 1.47 .23  1, 43 2.14 .15 

   Cluster x Congruency 2, 36 1.35 .27  2, 43 .79 .46 
 

Table 11. ANOVA results for demographic, clinical, and behavioral comparisons across clusters, 
before (left) and after (right) COM participants were added to the cluster, with p ≤ .05 in bold 
and p ≤ .10 in italics. 
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Variable    

Function 1 
Stimulus Engagement 

Function 2 
Feedback Responsivity 

Stimulus-related frontal theta ITPC .32 .16 

Stimulus-related occipitoparietal theta/alpha 
ITPC, both hemispheres 

.31 .15 

Feedback-related ERD ratio of faces/checks, 
both hemispheres 

.22 .12 

Feedback-related ERS to checks, 
right hemisphere 

.18 .34 

Feedback-related ERS to faces, 
right hemisphere 

.16 .24 

Resting frontal TBR .15 .12 

Feedback-related ERS to checks, 
left hemisphere 

.15 .33 

Feedback-related frontal theta ITPC .11 .53 

Feedback-related ERS to faces, 
left hemisphere 

.11 .36 

Pre-feedback AS .05 .06 

Feedback-related ERS ratio of faces/checks, 
right hemisphere 

.02 -.04 

Resting frontal AS -.01 .15 

Feedback-related ERS ratio of faces/checks, 
left hemisphere 

-.02 .00 

Resting central gamma -.13 -.17 

Tau for incongruent trials -.41 .18 

Tau for congruent trials -.43 .41 

 

Table 12. Canonical correlations of each variable with each function, ordered by most positive 
relationship with function 1 to least. The largest correlation is listed in bold.   



 
 

References 

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders 

(5th ed.). Washington, DC: Author. 

Rutter, M., Bailey, A., & Lord, C. (2003). The social communication questionnaire. Los 

Angeles: Western Psychological Services.  

Adamo, N., Huo, L., Adelsberg, S., Petkova, E., Castellanos, F. X., & Di Martino, A. (2014). 

Response time intra-subject variability: commonalities between children with autism 

spectrum disorders and children with ADHD. Eur Child Adolesc Psychiatry, 23(2), 69-

79. doi:10.1007/s00787-013-0428-4 

Allen, J. J., Coan, J. A., & Nazarian, M. (2004). Issues and assumptions on the road from raw 

signals to metrics of frontal EEG asymmetry in emotion. Biol Psychol, 67(1-2), 183-218. 

doi:10.1016/j.biopsycho.2004.03.007 

Allen, J. J., Keune, P. M., Schonenberg, M., & Nusslock, R. (2018). Frontal EEG alpha 

asymmetry and emotion: From neural underpinnings and methodological considerations 

to psychopathology and social cognition. Psychophysiology, 55(1). 

doi:10.1111/psyp.13028 

Alperin, B. R., Smith, C. J., Gustafsson, H. C., Figuracion, M. T., & Karalunas, S. L. (2019). The 

relationship between alpha asymmetry and ADHD depends on negative affect level and 

parenting practices. J Psychiatr Res, 116, 138-146. doi:10.1016/j.jpsychires.2019.06.016 

Arns, M., Conners, C. K., & Kraemer, H. C. (2013). A decade of EEG Theta/Beta Ratio 

Research in ADHD: a meta-analysis. J Atten Disord, 17(5), 374-383. 

doi:10.1177/1087054712460087 



   

96 
 

Ashburner, J., Ziviani, J., & Rodger, S. (2008). Sensory processing and classroom emotional, 

behavioral, and educational outcomes in children with autism spectrum disorder. Am J 

Occup Ther, 62(5), 564-573. doi:10.5014/ajot.62.5.564 

Ashinoff, B. K., & Abu-Akel, A. (2019). Hyperfocus: the forgotten frontier of attention. Psychol 

Res. doi:10.1007/s00426-019-01245-8 

Aurlien, H., Gjerde, I. O., Aarseth, J. H., Eldoen, G., Karlsen, B., Skeidsvoll, H., & Gilhus, N. E. 

(2004). EEG background activity described by a large computerized database. Clin 

Neurophysiol, 115(3), 665-673. doi:10.1016/j.clinph.2003.10.019 

Baruth, J. M., Casanova, M. F., Sears, L., & Sokhadze, E. (2010). Early-stage visual processing 

abnormalities in high-functioning autism spectrum disorder (ASD). Transl Neurosci, 

1(2), 177-187. doi:10.2478/v10134-010-0024-9 

Baving, L., Laucht, M., & Schmidt, M. H. (1999). Atypical frontal brain activation in ADHD: 

preschool and elementary school boys and girls. J Am Acad Child Adolesc Psychiatry, 

38(11), 1363-1371. doi:10.1097/00004583-199911000-00010 

Bellgrove, M. A., Hawi, Z., Kirley, A., Gill, M., & Robertson, I. H. (2005). Dissecting the 

attention deficit hyperactivity disorder (ADHD) phenotype: sustained attention, response 

variability and spatial attentional asymmetries in relation to dopamine transporter 

(DAT1) genotype. Neuropsychologia, 43(13), 1847-1857. 

doi:10.1016/j.neuropsychologia.2005.03.011 

Bink, M., van Boxtel, G. J., Popma, A., Bongers, I. L., Denissen, A. J., & van Nieuwenhuizen, 

C. (2015). EEG theta and beta power spectra in adolescents with ADHD versus 

adolescents with ASD + ADHD. Eur Child Adolesc Psychiatry, 24(8), 873-886. 

doi:10.1007/s00787-014-0632-x 



   

97 
 

Bishop, D. V., & Baird, G. (2001). Parent and teacher report of pragmatic aspects of 

communication: use of the children's communication checklist in a clinical setting. Dev 

Med Child Neurol, 43(12), 809-818. doi:10.1017/s0012162201001475 

Blumberg, S. J., Bramlett, M. D., Kogan, M. D., Schieve, L. A., Jones, J. R., & Lu, M. C. (2013). 

Changes in prevalence of parent-reported Autism spectrum disorder in school-aged U.S. 

children: 2007 to 2011-2012. Retrieved from Hyattsville, MD:  

Bora, E., & Pantelis, C. (2016). Meta-analysis of social cognition in attention-

deficit/hyperactivity disorder (ADHD): comparison with healthy controls and autistic 

spectrum disorder. Psychol Med, 46(4), 699-716. doi:10.1017/S0033291715002573 

Braboszcz, C., & Delorme, A. (2011). Lost in thoughts: neural markers of low alertness during 

mind wandering. Neuroimage, 54(4), 3040-3047. doi:10.1016/j.neuroimage.2010.10.008 

Buitelaar, J. K., van der Wees, M., Swaab-Barneveld, H., & van der Gaag, R. J. (1999). Theory 

of mind and emotion-recognition functioning in autistic spectrum disorders and in 

psychiatric control and normal children. Dev Psychopathol, 11(1), 39-58.  

Burnette, C. P., Henderson, H. A., Inge, A. P., Zahka, N. E., Schwartz, C. B., & Mundy, P. C. 

(2011). Anterior EEG asymmetry and the Modifier Model of Autism. J Autism Dev 

Disord, 41(8), 1113-1124. doi:10.1007/s10803-010-1138-0 

Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. 

Trends Cogn Sci, 18(8), 414-421. doi:10.1016/j.tics.2014.04.012 

Chan, A. S., Sze, S. L., & Cheung, M. C. (2007). Quantitative electroencephalographic profiles 

for children with autistic spectrum disorder. Neuropsychology, 21(1), 74-81. 

doi:10.1037/0894-4105.21.1.74 



   

98 
 

Christ, S. E., Holt, D. D., White, D. A., & Green, L. (2007). Inhibitory control in children with 

autism spectrum disorder. J Autism Dev Disord, 37(6), 1155-1165. doi:10.1007/s10803-

006-0259-y 

Clarke, A. R., Barry, R. J., Dupuy, F. E., Heckel, L. D., McCarthy, R., Selikowitz, M., & 

Johnstone, S. J. (2011). Behavioural differences between EEG-defined subgroups of 

children with Attention-Deficit/Hyperactivity Disorder. Clin Neurophysiol, 122(7), 1333-

1341. doi:10.1016/j.clinph.2010.12.038 

Coghlan, S., Horder, J., Inkster, B., Mendez, M. A., Murphy, D. G., & Nutt, D. J. (2012). GABA 

system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci 

Biobehav Rev, 36(9), 2044-2055. doi:10.1016/j.neubiorev.2012.07.005 

Cohen, M. X. (2011). Error-related medial frontal theta activity predicts cingulate-related 

structural connectivity. Neuroimage, 55(3), 1373-1383. 

doi:10.1016/j.neuroimage.2010.12.072 

Danielson, M. L., Bitsko, R. H., Ghandour, R. M., Holbrook, J. R., Kogan, M. D., & Blumberg, 

S. J. (2018). Prevalence of Parent-Reported ADHD Diagnosis and Associated Treatment 

Among U.S. Children and Adolescents, 2016. J Clin Child Adolesc Psychol, 47(2), 199-

212. doi:10.1080/15374416.2017.1417860 

de Bartolomeis, A., Tomasetti, C., & Iasevoli, F. (2015). Update on the Mechanism of Action of 

Aripiprazole: Translational Insights into Antipsychotic Strategies Beyond Dopamine 

Receptor Antagonism. CNS Drugs, 29(9), 773-799. doi:10.1007/s40263-015-0278-3 

De Stefano, L. A., Schmitt, L. M., White, S. P., Mosconi, M. W., Sweeney, J. A., & Ethridge, L. 

E. (2019). Developmental Effects on Auditory Neural Oscillatory Synchronization 



   

99 
 

Abnormalities in Autism Spectrum Disorder. Front Integr Neurosci, 13, 34. 

doi:10.3389/fnint.2019.00034 

DeBoth, K. K., & Reynolds, S. (2017). A systematic review of sensory-based autism subtypes. 

Research in Autism Spectrum Disorders, 36, 44-56. doi:10.1016/j.rasd.2017.01.005 

Demurie, E., Roeyers, H., Baeyens, D., & Sonuga-Barke, E. (2012). Temporal discounting of 

monetary rewards in children and adolescents with ADHD and autism spectrum 

disorders. Dev Sci, 15(6), 791-800. doi:10.1111/j.1467-7687.2012.01178.x 

Dhossche, D., Applegate, H., Abraham, A., Maertens, P., Bland, L., Bencsath, A., & Martinez, J. 

(2002). Elevated plasma gamma-aminobutyric acid (GABA) levels in autistic youngsters: 

stimulus for a GABA hypothesis of autism. Med Sci Monit, 8(8), PR1-6.  

Dickinson, A., Jones, M., & Milne, E. (2016). Measuring neural excitation and inhibition in 

autism: Different approaches, different findings and different interpretations. Brain Res, 

1648(Pt A), 277-289. doi:10.1016/j.brainres.2016.07.011 

DiStefano, C., Dickinson, A., Baker, E., & Jeste, S. S. (2019). EEG Data Collection in Children 

with ASD: The Role of State in Data Quality and Spectral Power. Res Autism Spectr 

Disord, 57, 132-144. doi:10.1016/j.rasd.2018.10.001 

Donahue, M. J., Near, J., Blicher, J. U., & Jezzard, P. (2010). Baseline GABA concentration and 

fMRI response. Neuroimage, 53(2), 392-398. doi:10.1016/j.neuroimage.2010.07.017 

Dunn, L. M., & Dunn, D. M. (2007). Peabody Picture Vocabulary Test-Fourth Edition (PPVT-

4). Circle Pines, MN: American Guidance Service. 

Edgar, J. C., Fisk, C. L. t., Liu, S., Pandey, J., Herrington, J. D., Schultz, R. T., & Roberts, T. P. 

(2016). Translating Adult Electrophysiology Findings to Younger Patient Populations: 

Difficulty Measuring 40-Hz Auditory Steady-State Responses in Typically Developing 



   

100 
 

Children and Children with Autism Spectrum Disorder. Dev Neurosci, 38(1), 1-14. 

doi:10.1159/000441943 

Edgar, J. C., Khan, S. Y., Blaskey, L., Chow, V. Y., Rey, M., Gaetz, W., . . . Roberts, T. P. 

(2015). Neuromagnetic oscillations predict evoked-response latency delays and core 

language deficits in autism spectrum disorders. J Autism Dev Disord, 45(2), 395-405. 

doi:10.1007/s10803-013-1904-x 

El-Habashy, H., Raafat, O., Afifi, L., Raafat, H., & Abdullah, K. (2016). Quantitative EEG 

Ratios and Power in Children with Autistic Spectrum Disorder. The Medical Journal of 

Cairo University, 84(1), 1017-1027.  

Engel, A. K., & Fries, P. (2010). Beta-band oscillations--signalling the status quo? Curr Opin 

Neurobiol, 20(2), 156-165. doi:10.1016/j.conb.2010.02.015 

Frank, M. J., Santamaria, A., O'Reilly, R. C., & Willcutt, E. (2007). Testing computational 

models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity 

disorder. Neuropsychopharmacology, 32(7), 1583-1599. doi:10.1038/sj.npp.1301278 

Gable, P. A., Neal, L. B., & Threadgill, A. H. (2018). Regulatory behavior and frontal activity: 

Considering the role of revised-BIS in relative right frontal asymmetry. 

Psychophysiology, 55(1). doi:10.1111/psyp.12910 

Gaetz, W., Bloy, L., Wang, D. J., Port, R. G., Blaskey, L., Levy, S. E., & Roberts, T. P. (2014). 

GABA estimation in the brains of children on the autism spectrum: measurement 

precision and regional cortical variation. Neuroimage, 86, 1-9. 

doi:10.1016/j.neuroimage.2013.05.068 

Gauthier, I. (2000). Expertise for cars and birds recruits brain areas involved in face recognition.  



   

101 
 

Geurts, H. M., Grasman, R. P., Verte, S., Oosterlaan, J., Roeyers, H., van Kammen, S. M., & 

Sergeant, J. A. (2008). Intra-individual variability in ADHD, autism spectrum disorders 

and Tourette's syndrome. Neuropsychologia, 46(13), 3030-3041. 

doi:10.1016/j.neuropsychologia.2008.06.013 

Giertuga, K., Zakrzewska, M. Z., Bielecki, M., Racicka-Pawlukiewicz, E., Kossut, M., & 

Cybulska-Klosowicz, A. (2017). Age-Related Changes in Resting-State EEG Activity in 

Attention Deficit/Hyperactivity Disorder: A Cross-Sectional Study. Front Hum Neurosci, 

11, 285. doi:10.3389/fnhum.2017.00285 

Gordon, E., Palmer, D. M., & Cooper, N. (2010). EEG alpha asymmetry in schizophrenia, 

depression, PTSD, panic disorder, ADHD and conduct disorder. Clin EEG Neurosci, 

41(4), 178-183. doi:10.1177/155005941004100404 

Gorka, S. M., Phan, K. L., & Shankman, S. A. (2015). Convergence of EEG and fMRI measures 

of reward anticipation. Biol Psychol, 112, 12-19. doi:10.1016/j.biopsycho.2015.09.007 

Grice, S. J., Spratling, M. W., Karmiloff-Smith, A., Halit, H., Csibra, G., de Haan, M., & 

Johnson, M. H. (2001). Disordered visual processing and oscillatory brain activity in 

autism and Williams syndrome. Neuroreport, 12(12), 2697-2700. doi:10.1097/00001756-

200108280-00021 

Groen, Y., Wijers, A. A., Mulder, L. J., Waggeveld, B., Minderaa, R. B., & Althaus, M. (2008). 

Error and feedback processing in children with ADHD and children with Autistic 

Spectrum Disorder: an EEG event-related potential study. Clin Neurophysiol, 119(11), 

2476-2493. doi:10.1016/j.clinph.2008.08.004 

Groom, M. J., Cahill, J. D., Bates, A. T., Jackson, G. M., Calton, T. G., Liddle, P. F., & Hollis, 

C. (2010). Electrophysiological indices of abnormal error-processing in adolescents with 



   

102 
 

attention deficit hyperactivity disorder (ADHD). J Child Psychol Psychiatry, 51(1), 66-

76. doi:10.1111/j.1469-7610.2009.02128.x 

Groom, M. J., Kochhar, P., Hamilton, A., Liddle, E. B., Simeou, M., & Hollis, C. (2017). 

Atypical Processing of Gaze Cues and Faces Explains Comorbidity between Autism 

Spectrum Disorder (ASD) and Attention Deficit/Hyperactivity Disorder (ADHD). J 

Autism Dev Disord, 47(5), 1496-1509. doi:10.1007/s10803-017-3078-4 

Hale, T. S., Smalley, S. L., Dang, J., Hanada, G., Macion, J., McCracken, J. T., . . . Loo, S. K. 

(2010). ADHD familial loading and abnormal EEG alpha asymmetry in children with 

ADHD. J Psychiatr Res, 44(9), 605-615. doi:10.1016/j.jpsychires.2009.11.012 

Hale, T. S., Smalley, S. L., Hanada, G., Macion, J., McCracken, J. T., McGough, J. J., & Loo, S. 

K. (2009). Atypical alpha asymmetry in adults with ADHD. Neuropsychologia, 47(10), 

2082-2088. doi:10.1016/j.neuropsychologia.2009.03.021 

Hermens, D. F., Soei, E. X., Clarke, S. D., Kohn, M. R., Gordon, E., & Williams, L. M. (2005). 

Resting EEG theta activity predicts cognitive performance in attention-deficit 

hyperactivity disorder. Pediatr Neurol, 32(4), 248-256. 

doi:10.1016/j.pediatrneurol.2004.11.009 

Hinshaw, S. P. (2018). Attention Deficit Hyperactivity Disorder (ADHD): Controversy, 

Developmental Mechanisms, and Multiple Levels of Analysis. Annu Rev Clin Psychol, 

14, 291-316. doi:10.1146/annurev-clinpsy-050817-084917 

Hollingdale, J., Woodhouse, E., Young, S., Fridman, A., & Mandy, W. (2019). Autistic spectrum 

disorder symptoms in children and adolescents with attention-deficit/hyperactivity 

disorder: a meta-analytical review. Psychol Med, 1-14. doi:10.1017/S0033291719002368 



   

103 
 

Holroyd, C. B., Baker, T. E., Kerns, K. A., & Muller, U. (2008). Electrophysiological evidence 

of atypical motivation and reward processing in children with attention-deficit 

hyperactivity disorder. Neuropsychologia, 46(8), 2234-2242. 

doi:10.1016/j.neuropsychologia.2008.02.011 

Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: 

reinforcement learning, dopamine, and the error-related negativity. Psychol Rev, 109(4), 

679-709. doi:10.1037/0033-295X.109.4.679 

Holroyd, C. B., & Umemoto, A. (2016). The research domain criteria framework: The case for 

anterior cingulate cortex. Neurosci Biobehav Rev, 71, 418-443. 

doi:10.1016/j.neubiorev.2016.09.021 

Jeste, S. S., Frohlich, J., & Loo, S. K. (2015). Electrophysiological biomarkers of diagnosis and 

outcome in neurodevelopmental disorders. Curr Opin Neurol, 28(2), 110-116. 

doi:10.1097/WCO.0000000000000181 

Jonkman, L. M., van Melis, J. J., Kemner, C., & Markus, C. R. (2007). Methylphenidate 

improves deficient error evaluation in children with ADHD: an event-related brain 

potential study. Biol Psychol, 76(3), 217-229. doi:10.1016/j.biopsycho.2007.08.004 

Karalunas, S. L., Geurts, H. M., Konrad, K., Bender, S., & Nigg, J. T. (2014). Annual research 

review: Reaction time variability in ADHD and autism spectrum disorders: measurement 

and mechanisms of a proposed trans-diagnostic phenotype. J Child Psychol Psychiatry, 

55(6), 685-710. doi:10.1111/jcpp.12217 

Karalunas, S. L., Huang-Pollock, C. L., & Nigg, J. T. (2012). Decomposing attention-

deficit/hyperactivity disorder (ADHD)-related effects in response speed and variability. 

Neuropsychology, 26(6), 684-694. doi:10.1037/a0029936 



   

104 
 

Kaufman, A. S., & Kaufman, N. L. (2004). Kaufman brief intelligence test Kbit 2; manual. 

Bloomington, MN: Pearson. 

Keehn, B., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2015). Atypical hemispheric 

specialization for faces in infants at risk for autism spectrum disorder. Autism Res, 8(2), 

187-198. doi:10.1002/aur.1438 

Keune, P. M., Wiedemann, E., Schneidt, A., & Schonenberg, M. (2015). Frontal brain 

asymmetry in adult attention-deficit/hyperactivity disorder (ADHD): extending the 

motivational dysfunction hypothesis. Clin Neurophysiol, 126(4), 711-720. 

doi:10.1016/j.clinph.2014.07.008 

Kinsbourne, M. (1991). Overfocusing: An Apparent Subtype of Attention Deficit-Hyperactivity 

Disorder. In Pediatric Neurology: Behavior and Cognition of the Child with Brain 

Dysfunction (pp. 18-35). 

Koegel, L. K., Koegel, R. L., Ashbaugh, K., & Bradshaw, J. (2014). The importance of early 

identification and intervention for children with or at risk for autism spectrum disorders. 

Int J Speech Lang Pathol, 16(1), 50-56. doi:10.3109/17549507.2013.861511 

Kofler, M. J., Rapport, M. D., Sarver, D. E., Raiker, J. S., Orban, S. A., Friedman, L. M., & 

Kolomeyer, E. G. (2013). Reaction time variability in ADHD: a meta-analytic review of 

319 studies. Clin Psychol Rev, 33(6), 795-811. doi:10.1016/j.cpr.2013.06.001 

Lacouture, Y., & Cousineau, D. (2008). How to use MATLAB to fit the ex-Gaussian and other 

probability functions to a distribution of response times. Tutorials in Quantitative 

Methods for Psychology, 4(1), 35-45. doi:10.20982/tqmp.04.1.p035 

Lansbergen, M. M., Arns, M., van Dongen-Boomsma, M., Spronk, D., & Buitelaar, J. K. (2011). 

The increase in theta/beta ratio on resting-state EEG in boys with attention-



   

105 
 

deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog 

Neuropsychopharmacol Biol Psychiatry, 35(1), 47-52. doi:10.1016/j.pnpbp.2010.08.004 

Larson, M. J., South, M., Krauskopf, E., Clawson, A., & Crowley, M. J. (2011). Feedback and 

reward processing in high-functioning autism. Psychiatry Res, 187(1-2), 198-203. 

doi:10.1016/j.psychres.2010.11.006 

Larsson, H., Chang, Z., D'Onofrio, B. M., & Lichtenstein, P. (2014). The heritability of clinically 

diagnosed attention deficit hyperactivity disorder across the lifespan. Psychol Med, 

44(10), 2223-2229. doi:10.1017/S0033291713002493 

Lee, D. O., & Ousley, O. Y. (2006). Attention-deficit hyperactivity disorder symptoms in a clinic 

sample of children and adolescents with pervasive developmental disorders. J Child 

Adolesc Psychopharmacol, 16(6), 737-746. doi:10.1089/cap.2006.16.737 

Lee, S. H., Kwan, A. C., Zhang, S., Phoumthipphavong, V., Flannery, J. G., Masmanidis, S. C., . 

. . Dan, Y. (2012). Activation of specific interneurons improves V1 feature selectivity and 

visual perception. Nature, 488(7411), 379-383. doi:10.1038/nature11312 

Leitner, Y. (2014). The co-occurrence of autism and attention deficit hyperactivity disorder in 

children - what do we know? Front Hum Neurosci, 8, 268. 

doi:10.3389/fnhum.2014.00268 

Loo, S. K., Specter, E., Smolen, A., Hopfer, C., Teale, P. D., & Reite, M. L. (2003). Functional 

effects of the DAT1 polymorphism on EEG measures in ADHD. J Am Acad Child 

Adolesc Psychiatry, 42(8), 986-993. doi:10.1097/01.CHI.0000046890.27264.88 

Masi, A., DeMayo, M. M., Glozier, N., & Guastella, A. J. (2017). An Overview of Autism 

Spectrum Disorder, Heterogeneity and Treatment Options. Neurosci Bull, 33(2), 183-193. 

doi:10.1007/s12264-017-0100-y 



   

106 
 

Massar, S. A., Rossi, V., Schutter, D. J., & Kenemans, J. L. (2012). Baseline EEG theta/beta 

ratio and punishment sensitivity as biomarkers for feedback-related negativity (FRN) and 

risk-taking. Clin Neurophysiol, 123(10), 1958-1965. doi:10.1016/j.clinph.2012.03.005 

McLoughlin, G., Palmer, J. A., Rijsdijk, F., & Makeig, S. (2014). Genetic overlap between 

evoked frontocentral theta-band phase variability, reaction time variability, and attention-

deficit/hyperactivity disorder symptoms in a twin study. Biol Psychiatry, 75(3), 238-247. 

doi:10.1016/j.biopsych.2013.07.020 

McPartland, J. C., Crowley, M. J., Perszyk, D. R., Mukerji, C. E., Naples, A. J., Wu, J., & 

Mayes, L. C. (2012). Preserved reward outcome processing in ASD as revealed by event-

related potentials. Journal of Neurodevelopmental Disorders, 4. doi:Artn 16 

10.1186/1866-1955-4-16 

McPartland, J. C., Wu, J., Bailey, C. A., Mayes, L. C., Schultz, R. T., & Klin, A. (2011). 

Atypical neural specialization for social percepts in autism spectrum disorder. Soc 

Neurosci, 6(5-6), 436-451. doi:10.1080/17470919.2011.586880 

Metin, B., Roeyers, H., Wiersema, J. R., van der Meere, J. J., Thompson, M., & Sonuga-Barke, 

E. (2013). ADHD performance reflects inefficient but not impulsive information 

processing: a diffusion model analysis. Neuropsychology, 27(2), 193-200. 

doi:10.1037/a0031533 

Milne, E. (2011). Increased intra-participant variability in children with autistic spectrum 

disorders: evidence from single-trial analysis of evoked EEG. Front Psychol, 2, 51. 

doi:10.3389/fpsyg.2011.00051 

Mowlem, F., Agnew-Blais, J., Taylor, E., & Asherson, P. (2019). Do different factors influence 

whether girls versus boys meet ADHD diagnostic criteria? Sex differences among 



   

107 
 

children with high ADHD symptoms. Psychiatry Res, 272, 765-773. 

doi:10.1016/j.psychres.2018.12.128 

Nash, K., Inzlicht, M., & McGregor, I. (2012). Approach-related left prefrontal EEG asymmetry 

predicts muted error-related negativity. Biol Psychol, 91(1), 96-102. 

doi:10.1016/j.biopsycho.2012.05.005 

Orekhova, E. V., Stroganova, T. A., Nygren, G., Tsetlin, M. M., Posikera, I. N., Gillberg, C., & 

Elam, M. (2007). Excess of high frequency electroencephalogram oscillations in boys 

with autism. Biol Psychiatry, 62(9), 1022-1029. doi:10.1016/j.biopsych.2006.12.029 

Ozel-Kizil, E. T., Kokurcan, A., Aksoy, U. M., Kanat, B. B., Sakarya, D., Bastug, G., . . . Oncu, 

B. (2016). Hyperfocusing as a dimension of adult attention deficit hyperactivity disorder. 

Res Dev Disabil, 59, 351-358. doi:10.1016/j.ridd.2016.09.016 

Papenberg, G., Hammerer, D., Muller, V., Lindenberger, U., & Li, S. C. (2013). Lower theta 

inter-trial phase coherence during performance monitoring is related to higher reaction 

time variability: a lifespan study. Neuroimage, 83, 912-920. 

doi:10.1016/j.neuroimage.2013.07.032 

Pelham, W. E., Jr., & Fabiano, G. A. (2008). Evidence-based psychosocial treatments for 

attention-deficit/hyperactivity disorder. J Clin Child Adolesc Psychol, 37(1), 184-214. 

doi:10.1080/15374410701818681 

Plichta, M. M., Vasic, N., Wolf, R. C., Lesch, K. P., Brummer, D., Jacob, C., . . . Gron, G. 

(2009). Neural hyporesponsiveness and hyperresponsiveness during immediate and 

delayed reward processing in adult attention-deficit/hyperactivity disorder. Biol 

Psychiatry, 65(1), 7-14. doi:10.1016/j.biopsych.2008.07.008 



   

108 
 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59-108. 

doi:10.1037/0033-295x.85.2.59 

Ratcliff, R., Smith, P. L., Brown, S. D., & McKoon, G. (2016). Diffusion Decision Model: 

Current Issues and History. Trends Cogn Sci, 20(4), 260-281. 

doi:10.1016/j.tics.2016.01.007 

Reichow, B., Volkmar, F. R., & Bloch, M. H. (2013). Systematic review and meta-analysis of 

pharmacological treatment of the symptoms of attention-deficit/hyperactivity disorder in 

children with pervasive developmental disorders. J Autism Dev Disord, 43(10), 2435-

2441. doi:10.1007/s10803-013-1793-z 

Reznik, S. J., & Allen, J. J. B. (2018). Frontal asymmetry as a mediator and moderator of 

emotion: An updated review. Psychophysiology, 55(1). doi:10.1111/psyp.12965 

Rhodes, G., Byatt, G., Michie, P. T., & Puce, A. (2004). Is the fusiform face area specialized for 

faces, individuation, or expert individuation? J Cogn Neurosci, 16(2), 189-203. 

doi:10.1162/089892904322984508 

Roane, H. S., Fisher, W. W., & Carr, J. E. (2016). Applied Behavior Analysis as Treatment for 

Autism Spectrum Disorder. J Pediatr, 175, 27-32. doi:10.1016/j.jpeds.2016.04.023 

Rockland, K. S., & Ichinohe, N. (2004). Some thoughts on cortical minicolumns. Exp Brain Res, 

158(3), 265-277. doi:10.1007/s00221-004-2024-9 

Rojas, D. C., & Wilson, L. B. (2014). gamma-band abnormalities as markers of autism spectrum 

disorders. Biomark Med, 8(3), 353-368. doi:10.2217/bmm.14.15 

Rousselet, G. A., Husk, J. S., Bennett, P. J., & Sekuler, A. B. (2007). Single-trial EEG dynamics 

of object and face visual processing. Neuroimage, 36(3), 843-862. 

doi:10.1016/j.neuroimage.2007.02.052 



   

109 
 

Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: increased ratio of 

excitation/inhibition in key neural systems. Genes Brain Behav, 2(5), 255-267. 

doi:10.1046/j.1601-183X.2003.00037.x 

Rubia, K., Smith, A. B., Brammer, M. J., & Taylor, E. (2007). Temporal lobe dysfunction in 

medication-naive boys with attention-deficit/hyperactivity disorder during attention 

allocation and its relation to response variability. Biol Psychiatry, 62(9), 999-1006. 

doi:10.1016/j.biopsych.2007.02.024 

Saad, J. F., Kohn, M. R., Clarke, S., Lagopoulos, J., & Hermens, D. F. (2018). Is the Theta/Beta 

EEG Marker for ADHD Inherently Flawed? J Atten Disord, 22(9), 815-826. 

doi:10.1177/1087054715578270 

Sagvolden, T., Johansen, E. B., Aase, H., & Russell, V. A. (2005). The dynamic developmental 

theory of attention-deficit/hyperactivity disorder (ADHD): Present status and future 

perspectives. Behavioral and Brain Sciences, 28(03). doi:10.1017/s0140525x05430071 

Salazar, F., Baird, G., Chandler, S., Tseng, E., O'Sullivan, T., Howlin, P., . . . Simonoff, E. 

(2015). Co-occurring Psychiatric Disorders in Preschool and Elementary School-Aged 

Children with Autism Spectrum Disorder. J Autism Dev Disord, 45(8), 2283-2294. 

doi:10.1007/s10803-015-2361-5 

Salum, G. A., Sonuga-Barke, E., Sergeant, J., Vandekerckhove, J., Gadelha, A., Moriyama, T. 

S., . . . Rohde, L. A. (2014). Mechanisms underpinning inattention and hyperactivity: 

neurocognitive support for ADHD dimensionality. Psychol Med, 44(15), 3189-3201. 

doi:10.1017/S0033291714000919 

Sanz-Cervera, P., Pastor-Cerezuela, G., Fernandez-Andres, M. I., & Tarraga-Minguez, R. 

(2015). Sensory processing in children with Autism Spectrum Disorder: Relationship 



   

110 
 

with non-verbal IQ, autism severity and Attention Deficit/Hyperactivity Disorder 

symptomatology. Res Dev Disabil, 45-46, 188-201. doi:10.1016/j.ridd.2015.07.031 

Schauder, K. B., & Bennetto, L. (2016). Toward an Interdisciplinary Understanding of Sensory 

Dysfunction in Autism Spectrum Disorder: An Integration of the Neural and Symptom 

Literatures. Front Neurosci, 10, 268. doi:10.3389/fnins.2016.00268 

Scheres, A., Lee, A., & Sumiya, M. (2008). Temporal reward discounting and ADHD: task and 

symptom specific effects. J Neural Transm (Vienna), 115(2), 221-226. 

doi:10.1007/s00702-007-0813-6 

Scheres, A., Milham, M. P., Knutson, B., & Castellanos, F. X. (2007). Ventral striatal 

hyporesponsiveness during reward anticipation in attention-deficit/hyperactivity disorder. 

Biol Psychiatry, 61(5), 720-724. doi:10.1016/j.biopsych.2006.04.042 

Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. 

Science, 275(5306), 1593-1599. doi:10.1126/science.275.5306.1593 

Snyder, S. M., & Hall, J. R. (2006). A meta-analysis of quantitative EEG power associated with 

attention-deficit hyperactivity disorder. J Clin Neurophysiol, 23(5), 440-455. 

doi:10.1097/01.wnp.0000221363.12503.78 

Snyder, S. M., Rugino, T. A., Hornig, M., & Stein, M. A. (2015). Integration of an EEG 

biomarker with a clinician's ADHD evaluation. Brain Behav, 5(4), e00330. 

doi:10.1002/brb3.330 

Sonuga-Barke, E. J. (2005). Causal models of attention-deficit/hyperactivity disorder: from 

common simple deficits to multiple developmental pathways. Biol Psychiatry, 57(11), 

1231-1238. doi:10.1016/j.biopsych.2004.09.008 



   

111 
 

Sparrow, S. S., Cicchetti, D. V., & Balla, D. A. (2005). Vineland adaptive behavior scales (2nd 

ed.). Circle Pines, MN: American Guidance Service. 

Stark, R., Bauer, E., Merz, C. J., Zimmermann, M., Reuter, M., Plichta, M. M., . . . Herrmann, 

M. J. (2011). ADHD related behaviors are associated with brain activation in the reward 

system. Neuropsychologia, 49(3), 426-434. doi:10.1016/j.neuropsychologia.2010.12.012 

Stavropoulos, K. K., & Carver, L. J. (2018). Oscillatory rhythm of reward: anticipation and 

processing of rewards in children with and without autism. Mol Autism, 9, 4. 

doi:10.1186/s13229-018-0189-5 

Stewart, J. L., Coan, J. A., Towers, D. N., & Allen, J. J. (2014). Resting and task-elicited 

prefrontal EEG alpha asymmetry in depression: support for the capability model. 

Psychophysiology, 51(5), 446-455. doi:10.1111/psyp.12191 

Storebo, O. J., Ramstad, E., Krogh, H. B., Nilausen, T. D., Skoog, M., Holmskov, M., . . . Gluud, 

C. (2015). Methylphenidate for children and adolescents with attention deficit 

hyperactivity disorder (ADHD). Cochrane Database Syst Rev(11), CD009885. 

doi:10.1002/14651858.CD009885.pub2 

Sutton, S. K., Burnette, C. P., Mundy, P. C., Meyer, J., Vaughan, A., Sanders, C., & Yale, M. 

(2005). Resting cortical brain activity and social behavior in higher functioning children 

with autism. J Child Psychol Psychiatry, 46(2), 211-222. doi:10.1111/j.1469-

7610.2004.00341.x 

Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. 

(2012). Developmental trajectories of resting EEG power: an endophenotype of autism 

spectrum disorder. PLoS One, 7(6), e39127. doi:10.1371/journal.pone.0039127 



   

112 
 

Tye, C., Asherson, P., Ashwood, K. L., Azadi, B., Bolton, P., & McLoughlin, G. (2014). 

Attention and inhibition in children with ASD, ADHD and co-morbid ASD + ADHD: an 

event-related potential study. Psychol Med, 44(5), 1101-1116. 

doi:10.1017/S0033291713001049 

Tye, C., Battaglia, M., Bertoletti, E., Ashwood, K. L., Azadi, B., Asherson, P., . . . McLoughlin, 

G. (2014). Altered neurophysiological responses to emotional faces discriminate children 

with ASD, ADHD and ASD+ADHD. Biol Psychol, 103, 125-134. 

doi:10.1016/j.biopsycho.2014.08.013 

van Meel, C. S., Heslenfeld, D. J., Oosterlaan, J., Luman, M., & Sergeant, J. A. (2011). ERPs 

associated with monitoring and evaluation of monetary reward and punishment in 

children with ADHD. J Child Psychol Psychiatry, 52(9), 942-953. doi:10.1111/j.1469-

7610.2010.02352.x 

van Meel, C. S., Oosterlaan, J., Heslenfeld, D. J., & Sergeant, J. A. (2005). Telling good from 

bad news: ADHD differentially affects processing of positive and negative feedback 

during guessing. Neuropsychologia, 43(13), 1946-1954. 

doi:10.1016/j.neuropsychologia.2005.03.018 

van Noordt, S., Wu, J., Venkataraman, A., Larson, M. J., South, M., & Crowley, M. J. (2017). 

Inter-trial Coherence of Medial Frontal Theta Oscillations Linked to Differential 

Feedback Processing in Youth and Young Adults with Autism. Res Autism Spectr 

Disord, 37, 1-10. doi:10.1016/j.rasd.2017.01.011 

van Son, D., De Blasio, F. M., Fogarty, J. S., Angelidis, A., Barry, R. J., & Putman, P. (2019). 

Frontal EEG theta/beta ratio during mind wandering episodes. Biol Psychol, 140, 19-27. 

doi:10.1016/j.biopsycho.2018.11.003 



   

113 
 

Visser, S. N., Danielson, M. L., Bitsko, R. H., Holbrook, J. R., Kogan, M. D., Ghandour, R. M., . 

. . Blumberg, S. J. (2014). Trends in the parent-report of health care provider-diagnosed 

and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011. J Am 

Acad Child Adolesc Psychiatry, 53(1), 34-46 e32. doi:10.1016/j.jaac.2013.09.001 

Volkow, N. D., Wang, G. J., Fowler, J. S., Gatley, S. J., Logan, J., Ding, Y. S., . . . Pappas, N. 

(1998). Dopamine transporter occupancies in the human brain induced by therapeutic 

doses of oral methylphenidate. Am J Psychiatry, 155(10), 1325-1331. 

doi:10.1176/ajp.155.10.1325 

Volkow, N. D., Wang, G. J., Tomasi, D., Kollins, S. H., Wigal, T. L., Newcorn, J. H., . . . 

Swanson, J. M. (2012). Methylphenidate-elicited dopamine increases in ventral striatum 

are associated with long-term symptom improvement in adults with attention deficit 

hyperactivity disorder. J Neurosci, 32(3), 841-849. doi:10.1523/JNEUROSCI.4461-

11.2012 

Wagenmakers, E. J., van der Maas, H. L., & Grasman, R. P. (2007). An EZ-diffusion model for 

response time and accuracy. Psychon Bull Rev, 14(1), 3-22. doi:10.3758/bf03194023 

Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2013). 

Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord, 5(1), 

24. doi:10.1186/1866-1955-5-24 

Whittington, M. A., Traub, R. D., Kopell, N., Ermentrout, B., & Buhl, E. H. (2000). Inhibition-

based rhythms: experimental and mathematical observations on network dynamics. 

International Journal of Psychophysiology, 38(3), 315-336. doi:10.1016/s0167-

8760(00)00173-2 



   

114 
 

Wolraich, M. L., Lambert, W., Doffing, M. A., Bickman, L., Simmons, T., & Worley, K. (2003). 

Psychometric properties of the Vanderbilt ADHD diagnostic parent rating scale in a 

referred population. J Pediatr Psychol, 28(8), 559-567. doi:10.1093/jpepsy/jsg046 

Woodman, G. F. (2010). A brief introduction to the use of event-related potentials in studies of 

perception and attention. Atten Percept Psychophys, 72(8), 2031-2046. 

doi:10.3758/APP.72.8.2031 

Zablotsky, B., Black, L. I., Maenner, M. J., Schieve, L. A., Danielson, M. L., Bitsko, R. H., . . . 

Boyle, C. A. (2019). Prevalence and Trends of Developmental Disabilities among 

Children in the United States: 2009-2017. Pediatrics, 144(4). doi:10.1542/peds.2019-

0811 

Zaldivar, D., Rauch, A., Whittingstall, K., Logothetis, N. K., & Goense, J. (2014). Dopamine-

induced dissociation of BOLD and neural activity in macaque visual cortex. Curr Biol, 

24(23), 2805-2811. doi:10.1016/j.cub.2014.10.006 

 


